INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700  800/521-0600









SIMULATION OF FLOW FIELD IN THE UT ARLINGTON

HYPERSONIC SHOCK TUNNEL

The members of the Committee approve the masters
thesis of Abhijit Sachdev

- Y, ,
Dale A. Anderson /Lé/é& %/ZOLM\——

Supervising Professor
Donald R. Wilson OMJYaM ﬂ W‘Za

%ﬂz/‘/]
- Vv /5
Frank K. Lu

[/

\ %




SIMULATION OF FLOW FIELD IN THE UT ARLINGTON

HYPERSONIC SHOCK TUNNEL

by

ABHIJIT SACHDEV

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN AEROSPACE ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON
May 1998



UMI Number: 1390193

UMI Microform 1390193
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103



ACKNOWLEDGMENTS

I want to convey my sincerest gratitude to Dr. Dale Anderson for serving as my
supervising professor. I would like to express my appreciation for his extensive guidance
and encouragement during the course of this study. This thesis would not have been

possible without his constant support and patience.

I would like to express my thanks to Dr. Ijaz Parpia, Dr. Donald Wilson and

Dr. Frank Lu for various insightful discussions related to this work.

Dr. (well almost!) Ramakanth Munipalli deserves special thanks for his valuable
advice and constant help as difficulties arose during the course of this work. I would
like to thank Ravi for his suggestions and constant encouragement. Thanks to Kamesh,
Thomas, Kwen Hsu, Kurusamy, louri and all my friends for support and for having
faith that I would reappear from repeated bouts of seclusion and slack! I would also

like to thank all fellow students for making my stay at UT Arlington memorable.

The greatest thanks go to my parents and family for making me what [ am. I

would like to thank them for believing in me and for being supportive all throughout.

April 20, 1998

11



ABSTRACT

SIMULATION OF FLOW FIELD IN THE UT ARLINGTON

HYPERSONIC SHOCK TUNNEL

Publication No.

Abhijit Sachdev, M.S.
The University of Texas at Arlington, 1998

Supervising Professor: Dale A. Anderson

This study focuses on simulation of the flow features in the Hypersonic Shock
Tunnel at UT Arlington. Unlike a standard shock tunnel with minimal changes in
area, this shock tunnel has various regions of drastic area changes. The presence of
several contractions and multiple edges generate interesting flow patterns with different
wave interactions. This leads to a complex flow field consisting of multiple shocks and
multiple choking phenomena. A second order time accurate scheme with an equilibrium

air model is used to solve the 2-D planar Navier-Stokes equations.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

The study of hypersonic and hypervelocity regimes involves various flow phenom-
ena and requires a variety of computational and experimental tools. The key character-
istic of the experimental facilities used for these flow studies is derived from the shock
tube or its operating principle with consequent short test times. In these cases the
shock tube has been exploited as a practical research facility for over half a century.
Extensive theoretical performance predictions have been made over the vears for ideal
and real gas shock tubes [1. 2. 3].

The shock tube has limitations in terms of flow Mach number capabilities. Abra-
ham Hertzberg suggested a modification to the conventional shock tube to generate
hypersonic Mach numbers [4]. A diverging nozzle added to the end of the low pres-
sure scction of the conventional shock tube permits the establishment of steadyv flow
Mach numbers far exceeding those that can be achieved using the conventional shock
tube. This modification to the basic shock tube. which is by far the most economical

hypersonic research facility is referred to as the “Shock Tunnel.”



1.2 Shock Tunnels

Shock tunnels are classified according to the mode of operation: nonreflected and
reflected. The nonreflected type. uses the flow behind the the incident primary shock
for expansion through the nozzle to the test section Mach numbers. This requires that
the nozzle entrance and the low pressure section of the shock tube be of the same area.
The duration of the uniform flow is limited by the arrival of the contact surface as
illustrated in figure 1.1. The inherent problem of an extremely short run time found in

shock tubes remains for nonreflected tunnels.

Driver section Driven section Nozzie

Diaphragm
t location

Expansion
wave

Available test
time
|
!

—r

Contact
surface

Figure 1.1. Schematic of a nonreflected shock tunnel and wave diagram.



Unlike the nonreflected mode. by far the more popular method of operating a
shock tunnel is the reflected mode in which a convergent-divergent nozzle is attached
to the end of the driven tube. The throat of the nozzle is small. because in hypersonic
How. the area ratio between the test section and the throat is very large. being in the
hundreds or thousands. The small opening also provides an excellent approximation to
the closed shock tube. Incorporated within the nozzle-throat region is provision for a
thin secondary diaphragm. such as aluminum foil. mylar or cellophane. to separate the

driven tube from the test-section.

Driver section Driven section Nozzle
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t location / !
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test time
|
Expansion > __V_r__
wave \ / t

Nominal test

Contact e
surface_ -~

Primary
shock

Reflect
shod
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|

S R

Figure 1.2. Schematic of a reflected shock tunnel and wave diagram.



When the primary shock arrives at the nozzle throat. it is reflected trapping the
test gas as shown in figure 1.2. This stationary gas exists at a high pressure. high
temperature state and is generally in chemical equilibrium. It should be noted that
the high enthalpy obtained in a reflected shock comes via compression by two shocks.
The reflected shock interacts with the oncoming contact surface and is then partly

reflected back toward the nozzle. Further weak reflections occur in region 3’

in the
wave diagram. The high enthalpy reservoir is drained through the nozzle to provide the
test flow. Region 5’ also provides a nominal test flow. the gas in this region possessing
higher stagnation enthalpy than that in the region 5. However. although the How
appears to be subjected to a rising pressure with oscillations due to the multiple shock
reflections. recent studies [3] suggest that the shocks are weak and a gradual pressure
rise is encountered. Essentially the duration of uniform flow and the useful test time
is limited by the arrival of the disturbance from the interaction of the reflected shock
with the contact surface. Under certain conditions. the reflected shock interacts with
the contact surface and is totally transmitted. When rhis happens. region 3 and 5
in figure 1.2 become one. and a longer test time is achieved—typically an order of
magnitude longer than if this particular condition does not occur. In this case. the shock
tunnel is known to be operated in the tailored interface™ mode and the incident shock
Mach number for which this condition occurs is the tailoring Mach number [6]. Using
this terminology. the wave diagram in figure 1.2 depicts an ~overtailored™ condition. If

the interaction between the reflected shock and the contact surface results in secondary

reflection in the form of an unsteady expansion. the process is “undertailored.”

Reflected shock tunnels have found a useful niche in hypersonic testing. possessing
many advantages over shock tubes or nonreflected hypersonic tunnels. First. reflected
tunnels have longer run times than nonreflected tunnels. Secondly. the reflected shock

tunnel provides a high enthalpy stagnant gas. This is of great importance in hyvper-



-

by

velocity testing. This high stagnation enthalpy gas can be expanded to higher test
section Mach numbers than in the case of nonreflected operation for the same incident
shock Mach numbers. The high stagnation temperatures achievable also overcome the

problem of air liquefaction (7].

1.3 Shock Tunnel at ARC, UT Arlington

The renewed interest in hypersonic aerodynamics in the 1990s prompted The
University of Texas at Arlington (UT Arlington) to start a modest experimental research
program through construction of a shock tunnel [8, 9]. The tunnel design is partly based
on the NASA-Langley Expansion Tube facility [10], which has been extensively re-
fitted and presently located at the General Applied Science Laboratories, Incorporated,
Ronkonkoma, New York [11]. The nozzle/test section assemblies and the corresponding
diffuser sections were donated to UT Arlington by the LTV Aerospace and Defense
Company, Dallas, Texas. These components are coupled to the shock tube with an
appropriate vacuum system, developed at UT Arlington. The preliminary design was
finished in 1986, and the tunnel was ready in mid-1989, with shakedown tests completed
by early 1990. Since then it has been used extensively to investigate hypersonic shock-

boundary layer interactions {12, 13, 14, 15].

This hypersonic shock tunnel is of conventional design and consists of a driver
connected to a plenum section, driven tube, nozzle, test section, diffuser and a vacuum
tank, as shown in the schematic in figures 1.3 and 1.4. The driver section is 3 m (10 ft)
long and has a 14.24 cm (6 in) diameter bore. The driven tube is 8.22 m (27 ft) long

with the same bore as that of the driver.
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Figure 1.3. Schematic of the UT Arlington hvpersonic shock tunnel.
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Figure 1.4. Schematic of the shock tube and the nozzle.

The driver tube. the diaphragm section and the driven tube are connected together
with two scored steel diaphragms enclosing a plenum. The driver tube pressure is
maintained at 24 MPa (3.500 psia) + 4 percent. and the driven tube at 280 kPa (40 psia)
= 1 percent. These components are coupled to the nozzle/test section assemblics via

a small tube having a diameter bore of 7.12 e¢m (3 in) as illustrated in figure 1.4.



The nozzle consists of a plug and a converging-diverging nozzle section. A secondary
diaphragm is located in the nozzle throat region and is used to separate the driven
tube gas from that in the test section. The secondary diaphragm is not scored. It
ruptures upon impact of the primary starting shock due to the cutting action of the
sharp edges on the plug. located behind the secondary diaphragm. The plug consists of
eight holes and a block located behind the secondary diaphragm (see figures 1.5 and 1.6).
The diaphragm generally petals at the corners without fragmentation and sticks to the
spherical face of the block due to the downstream flow pressure into the nozzle. The
gas then goes around the block through the holes and is expanded by the nozzle to the
test conditions. A 7.5 half-angle expansion conical nozzle with interchangeable throat
inserts enables test Mach numbers of 5 through 16 to be obtained. The test section is
of semi-free jet design. 536 mm (21.1 in.) long and 440 mm (17.5 in) in diameter. The

nozzle and the diffuser both protrude slightly into the test section.



Figure 1.5. 3-Dimensional view of the plug from the front.

Figure 1.6. 3-Dimensional view of the plug from the back.



1.4 Thesis Outline

Numerical simulations are required to understand the test flow conditions (tem-
perature, mass, time dependence, etc.) in greater detail and supplement the experimen-
tal knowledge. It is also used to improve the design of the experiments or to improve
the tunnel operation characteristics. In order to satisfy these objectives, several aspects
of the tunnel operation need to be simulated. A complete simulation of the propagation
of the flow structure down the whole length of the nozzle and the test section is required
for an estimation of the flow establishment and the test time. However such a simulation
would take a considerable amount of CPU and has not been attempted here. The ob-
Jective of the present study is to simulate the flow field in the UT Arlington Hypersonic
Shock Tunnel. Several area contractions and muitiple edges in this shock tunnel facility
lead to the development of a complex flow field. A two-dimensional code based on the
full Navier-Stokes equations has been used in this investigation. The intent of this study
is to provide a better understanding of the operation of the facility, and possibly the
design of new test conditions and diagnostic procedures. The combined focus of both
experimental and numerical tools leads to a superior measurement capability and is the

motivation behind this work.

The governing equations are given in chapter 2, which includes the fluid equations
of motion, and the equilibrium air model. The appropriate numerical technique is
detailed in chapter 3. Solving this problem will require several approximations and
simplifications. These simulation details along with the results are presented in chapter

4. Finally, conclusions and recommendations are detailed in chapter 5.




1.5 Nomenclature

The following is a list of the quantities that are used in this thesis.

1.5.1 Dimensional and Nondimensional Quantities

Quantity

Definition

Fy

Fyv

~i

~y

n

M

or n

Inviscid flux

Viscous flux

Vector of conservative variables
Unit vector along r-coordinate
Unit vector along y-coordinate
Unit vector in normal direction
r and y components of velocity
Sound speed

Specific heat at constant pressure
Specific heat at constant volume
Ratio of specific heat

Density

Static Pressure

Temperature

Mach number

10



Quantity Definition
Pr Prandtl number
7] Absolute viscosity
1% Kinematic viscosity
| Speed
e Specific internal energy
E Total energy per unit mass
h Specific enthalpy
H Total specific enthalpy
k Coefficient of thermal conductivity
q Heat transfer rate
f Numerical flux
Vv Cell volume
1 Characteristic variable
U Specific volume
z Convergence criterion
€ Parameter used in entropy fix
€ Parameter used in flux limiter function
f Angular measurement
E.n Transformed coordinates

11



Quantity Definition
K Equilibrium air property. (see chapter 2)
\ Equilibrium air property. (see chapter 2)
a Weighting factor. (see chapter 3)
A Flux Jacobian
A Eigenvalue of 4
A Diagonal matrix with diagonal elements A



1.5.2 Subscripts

Subscripts

Definition

Property in a ghost cell

tth value in a series

Jth value in a series

Property in an interior cell
Limited quantity

Total quantity

Derivatives with respect to r.y.:z
Freestream

Derivatives with respect to £. 1
Right or left hand side value
Perpendicular

Parallel

High order term

Driven tube

Driver tube

Behind reflected shock

13



1.5.3 Superscripts

Superscripts

Definition

Property at time level n
{th element of a vector
Reference value

Roe-averaged value

14



CHAPTER 2

GOVERNING EQUATIONS

2.1 Two-Dimensional Navier-Stokes Equations

The code [16] used for the present investigation is based on the full Navier-Stokes
equations. The flow is assumed to be laminar. The two-dimensional Navier-Stokes equa-
tions [17] can be written in integral form for an arbitrary control volume V surrounded

by boundary 8V as

0
a/dev-f-/av(Fl+Fv)-ndS_0 (2.1)
where
()
pu
U= (2.2)
pu
\pE/
and
[ P pv
pu +p puv
F; = T+ 7 (23)
puv pv? +p
\puE+up) \ vE + vp

15
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0 0
Orr Try
Fv = I+ J (2.4)
Ory Tyy
UOpp + U0y — {r UOy + U0y — qy
and
2 . )
Orr = —gu[(ux + vy) = ug] (2.5)
2 ) .
Oy = = 3hl(ue + 1y) = 30y (2.6)
Ory = _l‘(“y +) = Tyr (2.7)
i dT ‘
qr = Pr’ ar (2.8)
p  OT _
qy = Pr 5; (2.9)

E is the specific total energy defined as the sum of the specific internal energy ¢

and the specific kinetic energy:

E=e+ z(u*+?) (2.10)

()

and Pr is the Prandtl number.



The general equation of state used here is
p=flp.e). (2.11)

[n this code the dimensional form of the governing equations is solved: no non-

dimensionalization has been performed.

2.2 Equilibrium Air Model

2.2.1 General Equation of State

The equation of state for a reacting equilibrium gas is not available in closed form.
In order to obtain it without solving a set of nonlinear chemical reaction equations. a
table lookup or curve fit is needed. In this code. the procedure developed by Vinokur
and Liu [18] is adopted. In this procedure. any dependent thermodyvnamic variable
for equilibrium air and its derivatives can be obtained given an arbitrary choice of
two independent state variables. The purpose of this section is to review the theoretical
background of this procedure as well as the resulting modifications in some formulations

associated with the numerical flux functions.

For perfect gas. the equation of state is

[B™]
—
[fV]
—

p = pRT (:
For an equilibrium gas. the equation can be given as
p = p(p. pe). (2.13)

The derivatives are defined as
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In Vinokur and Liu's method [18]. given p and e. the values of p. \ and ~ are obtained

by interpolation in a table.

The definition of the speed of sound is

2 ()p D) -
- = (aﬂ),. (2.15)

where the subscript s denotes an isentropic process.

Using equations 2.13 and 2.14

- (3), <60, (5)
o= A + | 7 .
dp oo dpe ) dp ),

_ \+K(%§> (2.16)

Using the thermodynamic relation in [19]

2
(55) -~ (2.17)

where V is the specific volume. leads to

?ﬁE_ —p' ()_6
), ~ T\,

= h. (2.18)

Thus
c? =\ + rh (2.19)
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When the perfect gas model p = (v — 1)(pe) is used, it is possible to show that

x=0, andk =y - 1. (2.20)

2.2.2 Transport properties

For the perfect gas model, the laminar viscosity coefficient, pq, is determined from

Sutherland’s law

fto = 1.4565 x 10—613:/1 210 ( Hi‘i) _ (2.21)

The dynamic viscosity coefficient of air x in chemical equilibrium at high temper-
ature, can be written as a function of temperature and pressure [20, chapter 16]. The
deviation of u from g is not significant for flows below Mach 9. Therefore, the trans-
port properties for a perfect gas are used for all the viscous computations presented in

this work. Hence, it is assumed that p/pg = 1, because the expected deviation is small.

Similarly, the thermal conductivity & is evaluated from

HSp
¢ = —, 2.22
k=t (2:22)

where ¢, and Pr are held constant.




CHAPTER 3

NUMERICAL METHODS

The numerical methods used in the code [16] to solve the Navier-Stokes equa-
tions are described in this chapter. The theoretical background of the finite-volume
approach is reviewed in section 3.1. Upwind schemes. which have been used for evalu-
ating the inviscid fluxes. are discussed briefly. followed by sections devoted to implicit

time integration methods and the discussion of boundary and initial conditions.

3.1 Discretization

The integral equations of 2.1 are applied to the finite volume cell AV to get
/Uth + }{F-ds —0. (3.1)
1% s

where
F=F;+Fy (3.2)
and S denotes the boundary of the control volume. Since a structured grid is adopted
in the present study. the control volume under consideration always has four straight
line boundaries. Using the midpoint rule on the integral of flux around the boundary.
the governing equation becomes
1
AV U+ ) [F-AS| = 0. (3.3)
k=1

This equation holds for every finite volume cell in the domain.

20



3.2 Upwind Schemes

For more than 10 yvears. Godunov-type upwind schemes have been applied suc-
cessfully to inviscid compressible flow calculations. Essentially. these methods rely on
the nonlinear Riemann problem as the basic upwinding mechanism. This treatment
is theoretically and practically proven to be effective in computing flows with shock
structures.

Godunov [21] was the first to use the solution of the Riemann problem to de-
termine the fluid state at which the numerical flux is evaluated. The disadvantage of
Godunov’s method is the difficulty of finding the exact Riemann solution. which re-
quires a complex and time-consuming iterative procedure. To improve the efficiency of
this approach. many schemes based on an approximate Riemann solution. for exam-
ple. Osher’s scheme [22] and Roe’s scheme [23] . were developed. Among these. Roe’s
scheme is the most widely used. In the code used for the present work. a second-order
MUSCL extension [24] of Roe’s scheme is used in the implicit low solver.

[n rhis section. the upwind nature of the Godunov-type scheme is discussed. fol-
lowed by an analysis of the sharpening effect of the second-order extension. The analvsis
is most clearly and easily demonstrated if it is made on a one-dimensional model equa-

tion.

3.2.1 Upwinding and Dissipation

The discretized form of the model one-dimensional svstem of conservation laws

can be written as L .

O R AT 2
f i + +1/2 1—1/2 =0 (3 _1)
At Ar, .
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where Fi':%z represents the “numerical flux approximation” at the cell interface
1+ % at time level n. The basic idea proposed by Godunov (21], and employed in
other schemes of this type, is to take the numerical flux F,":l%z to be the exact or
approximate solution of a Riemann problem. The Riemann problem is an initial value
problem defined by sets of data which represent the left and the right initial states.
U™*! represents the volume-averaged state in cell i at the time level n+ 1. This value

reflects the perturbations due to waves that propagate from the cell interfaces.

In the present finite-volume discretization approach, an arbitrary cell face i +1/2
in a one-dimensional domain can get its input data pair (Ur.Ugr) from the conserved
variables defined on the cell centers to the left and right of the cell face i + 1 /2 . Roe’s
Hux-difference splitting scheme [23] specifies the cell face flux based on these left and

right state variables using
Friie L F F AgLF, 3.5
i+1/2 = 5( Liviy2 TRy — |ArL i+1/2()- (3.5)

The central contribution of the Roe’s work is finding a matrix A which satisfies the

following list of properties :

L. ApLF = F(Ug) — F(Ur) = A(UL, Up)(Ur — Uy)

2. All the eigenvalues of A are real and a complete set of eigenvectors of A can

be found.
3. As Up = Up =U*, A(UL,Ug) = A(U")

where A = -35 is the true Jacobian matrix. Roe [23] has shown that there exists a

unique average state U(Uy, Ur) such that A(U) satisfies the requirements listed above.
The Roe-averaged state is determined from

ur + rug

u =
1+r

(3.6)
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f=HtrHe

14+r (3.7)
. -1,
a=(y—1)(H - Pk )s (3.8)
where
r= P2 and H=e+iu? . (3.9)
AL 2

‘The upwind nature of the Godunov-type scheme can be easily demonstrated in

oF oF :
(%)L =~ (w)R ~ ARL- (3.10)

Then equation 3.5 can be rewritten in characteristic form as

the linear case, when

n 1 . .
AWETE = S (AWe.s + AW, — IA]A e Wisyy2) (3.11)

where W is the vector of characteristic variables and [A] is the diagonal matrix with
eigenvalues of 9F/0U. Note that the system of equations 3.11 is decoupled. For the
[ th row of system this implies

n+1/2 1 . . .
MW = SAWL L+ XWR L — INIARLIVL )

i+1/2

or

A\H1/2 1 ) i
(W ')I.H,2 = 5{(1 —sguX)Wg 4+ (1+ sgnA )Wy .} (3.12)

Equation 3.12 implies that the characteristic variables representing the averaged
ceil-face flow properties during the time step connecting time level n and n+ 1 are
chosen according to the signs of the corresponding eigenvalues. This is precisely what
“upwind” means. Equation 3.12 is exactly equivalent to the Courant-Isaacson-Rees

(CIR) scheme [25] if A is constant between i—1/2 and i+ 1/2 . Therefore, Roe’s
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approximate Riemann solver is sometimes referred to as a nonlinear extension of the

CIR scheme.

It is well known that Roe’s scheme will recover the exact solution whenever [/ L
and Upg lie on opposite sides of a shock wave, and a monotonic, physically relevant
solution is usually produced. Unfortunately, in some cases spurious non-physical solu-
tions are observed. One of the most well-known failures of the scheme is the generation
of expansion shocks in nearly-stationary transonic transitions. The other anomaly fre-
quently seen in hypersonic flow calculations is known as the carbuncle phenomenon.
These failures are usually avoided by the addition of numerical dissipation. Harten [26]
suggested that the necessary increase in the dissipation is provided by the augmentation

of the wavespeed:

G(A) = (A*/(4e))+e for |A| < 2,
= [} for |A] > 2e. (3.13)

This change increases the amount of numerical dissipation for |Al < 2¢ . This
treatment is sometimes known as an entropy fiz because it can be shown that it elim-
inates violations of the entropy condition [26]. For cases of weak or medium strength
shocks, the suggested e value is around 0.01 (u+c¢)y . For hypersonic flow problems,
previous numerical experiments [16, 27, 28] have shown that an e value as high as
0.2 (u +¢) is not unusual. Together with these equations, equation 3.5 becomes a

robust base scheme suitable for hypersonic flow calculations.

3.2.2 High Resolution Scheme

The upwind schemes introduced in the previous section are stable, usually mono-

tonic, but only first-order accurate. The solution obtained from a typical first-order
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scheme is usually too smeared for practical flow problem analysis. Therefore, some
technique to enhance resolution is necessary. There are several approaches to obtain
high resolution. An antidiffusion term can be added to the flux formulation of the base
upwind scheme, which cancels excessive dissipation in smooth regions. Another ap-
proach is to acquire a more accurate representation of the initial data distribution and
then apply the upwind scheme to the modified data. In the present code, the MUSCL
scheme of Van Leer [24], which is one of the approaches in the second category, has
been adopted. Details of this approach along with that for the flux limiter can be found

in {16] and are not discussed here for reasons of brevity.

3.3 Viscous Flux

The second-order central difference approximation is employed to evaluate the
viscous flux. On each cell face, the values of viscosity and gradient terms are obtained
by averaging the corresponding values in the neighboring cells. The gradient terms in

each cell are evaluated in the following manner:

a() _ Oiger — Oij
(3_77),-4- - St (3.14)
and
0\ _ Qiery = 0y
(5'5—):;7' _ - , (3.15)
then

90 _ (80 (2€) | (20) (on
(31") - (ag oz1) "\ an ) \az ) (3.16)
where () represents velocities or temperature, z‘ = z or y for two-dimensional calcula-

tions.
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3.4 Implicit Algorithms
The residual of the discretized equation is denoted by R and is defined as

- . At n.f.
R =(U'-U") + (—) S [F- ASL. (3.17)
AV 4
Where n.f. is the number of faces of the cell. For a structured grid, n.f. is always equal

to 4 for two-dimensional calculations. For a guessed value U,
R'= R(UY #0.

Since R(U™*!') = 0, we have, approximately,

oR OR IR
# = (), o (5),, o+ (), s
1,J 1=l

aR) , ( azz) ,
(aU 1,7+1 o aU ij—1 7ot

(3.18)

where §U = Un+! — pn,

The above equation gives rise to a block-pentadiagonal system of equations for
SU'. Employing approzimate factorization, this pentadiagonal system can be factored
into two tridiagonal systems and solved conveniently and efficiently with a block-

tridiagonal solver [17, 29).

Usually only a few Newton iterations are needed to reduce the residual R(U™Y)
to low levels provided that the time step value (or, equivalently, the CFL number) is
not too large. Typical CFL numbers used in this shock tunnel simulation are in the

range of 5-10. It is varied from time to time in order to maximize the calculation speed.
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3.5 Boundary Conditions and Initial Conditions
3.5.1 Boundary Conditions

3.5.1.1 Inflow and Outflow
For supersonic inflow boundaries, the fixed inflow conditions are specified on the

ghost cells along those boundaries,

U, = Us (3.19)

Supersonic outflow boundaries are treated with first order extrapolation,

Ug = (jint (320)

For boundaries with subsonic flow, some information must be obtained from out-
side the domain. The generally used characteristic boundary conditions still require

some information for flow outside the domain to complete the procedure [16].

Constant velocity and temperature gradients are assumed on all the inflow and

outflow boundaries, no matter whether supersonic or subsonic,
9() ()
((%t)g (32) (3.21)

3.5.1.2 Solid Wall

For inviscid calculations, the tangential wall boundary conditions can be symbol-

ically described as
V.Lg = —Vin and V][g = ‘/Hint (322)
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An adiabatic wall boundary condition and dp/dn = 0 are used for the inviscid calcu-
lation:

T, =Ty and p, = pig. (3.23)
For viscous calculations. the no-slip boundary conditions « = 0. + = 0 at the wall

surface can be achieved by specifying
Ug = —Uipy  and vy = —tin {3.24)
Two types of thermal boundary conditions. both the adiabatic and the isothermal
wall boundary conditions. are used in the viscous calculations. For an adiabatic wall.

the temperature and pressure in the ghost cell are obtained from equation 3.22. Since

we have 9T /dn = 0. which is equivalent to VT - i, = 0. the temperature gradient is

J1 a1
=) == LT 3.25
(80)9 <8E>im(’l£ ). (3:29)

where e = Arel’+ Ayey and 7, = Ar,r+ Ay, J

obtained from

The isothermal wall condition is given by

Pim

Py = AT and  p, = pine- (3.26)

and the remperature gradient is obtained from

aT -
<—> = Q(Tint - T\\'all) (3.27)
an
9
On an 5= constant wall boundary. the velocity derivatives in the 15 direction
are obtained by using

8u’>

— =24, (3.28)
(617 ]

where u' is u or v . The treatment for £ = constant boundary is exactly the same.

except that 5 in the above equations is replaced with £.



3.5.1.3 Symmetry Boundary Conditions

The ghost cell along a symmetric boundary is treated exactly like a tangential

wall in inviscid How.

3.5.2 Initial Conditions

The Navier-Stokes equations constitute a highly nonlinear system of partial differ-
ential equations: for different initial conditions. a unique solution is not guaranteed to be
obtained even with identical boundary conditions. In the present study. the diaphragm
opening is reduced to a case of removing the wall boundary condition. Physically
speaking. this treatment is equivalent to starting the Aow by suddenly rupturing the
diaphragm. The possible failure of the flow solver resulting from this impulsive start is

avoided by using a first-order calculation and smaller time steps for the early iterations.

Specific descriptions of the initial and boundary conditions used for each simula-

tion are made in the introductions and discussions of each simulation in chapter 1.



CHAPTER 4

RESULTS

4.1 Flow Structure

The shock tunnel consists of a high-pressure driver section and a low-pressure
driven section, separated by a diaphragm. The tunnel is started by rupturing a di-
aphragm which permits high-pressure gas in the driver section to expand into the driven
section. A normal shock is generated and propagates through the low pressure air inside
the driven section. A region of high-pressure, high-temperature air is produced between
this normal shock and the gas interface between the driver and driven air. When the
shock strikes the end of the driven section, it is reflected, leaving a region of almost stag-
nant air with extremely high pressure and temperature. Another diaphragm is broken
at the inlet of the nozzle to allow the stagnant air to expand through this nozzle and
reach the desired Mach number in the test section [30]. Impulsive hypersonic facilities

of this type have extremely short test times.

The present study consists of simulation of flow field in the hypersonic shock
tunnel at UT Arlington. The detail drawings of the shock tunnel have already been
presented in chapter 1. Several major difficulties are encountered in the design of a
simulation of this type. Modeling the entire facility from the driver section to the
test section would require grids for a physical length of about 15 meters. Moreover
important flow features such as shock and contact discontinuities should be resolved

with good accuracy, (a few mm in the flow direction). The spatial stiffness is then

30
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of the order of 10*. Even this is a conservative estimate, since boundary layers also
need to be resolved, requiring grid spacing as small as tens of micrometers in the radial

direction.

The complete operation of the hypersonic facility also involves a large number
of different physical processes at work, some of which are not well understood or are
very difficult to compute. The diaphragm rupture would require understanding of the
material deformation up to the plasticity limit. The penetration of the jet of the driver
gas into the driven tube is a problem of 3-D, turbulent, multi-scale mixing. The tem-
peratures are sufficiently high that some wall ablation may take place and contaminate
the flow. Finally radiative effects may need to be considered, and low density, thermal

non-equilibrium gas models may be required in the nozzle expansion [31].

The problem is compounded by the lack of crucial experimental data: such phe-
nomena as diaphragm rupture are difficult to observe, and only rough estimates of the
process time and energy scales can be made available and approximately correlated with
the experimental data. Ablation of the tunnel material is also a very complex physical

process, and depends on the microstructure of the material itself.

The actual development of the flow field and the logical sequence of events from
the driver tube to flow expansion into the test chamber, is unfortunately most difficult to
compute. Therefore some degree of detail has to be sacrificed in order to obtain practical
answers in reasonable time. Simplification of this problem can be accomplished first by
“dimensional reduction.” This involves solving the problem in a reduced number of
dimensions. Since the primary focus of this study is to simulate the flow features in
the tunnel, a 2-D simulation was postulated to meet the requirements. Moreover 2-D
simulations have low computational time and memory requirements, in comparison to

3-D flows, and can be used for a large number of computations. Another simplification
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is realized by decomposing the problem into several independent sections. For example
during the long process of flow development in the tunnel. not every part of the flow
in the tunnel is in variation. A “successive-block approach.” in which calculations are
performed in sequence. is used to reduce the cost of calculation. In the first stage. just
after the tunnel is started. only the first block is active. Subsequent blocks are activated
as the leading shock wave moves downstream into the blocks. After all the relevant waves
have moved to the downstream portion of the tunnel. the upstream portion of the tunnel
is taken out of the calculation. This sequential approach eliminates the need to compute
the flow solution at mesh points where there is relatively less flow disturbance and leads
to a tremendous saving of computational resources. A further simplification is that the
flow is considered laminar. The pressure and densities in the flow field are high enough
to make chemical effects significant. The flow residence times are expected to be larger
than the the reaction times. hence the flow is considered to be in chemical equilibrium

throughout.

The objective of the present study is to study the flow features in the UT Arlington
Hypersonic Shock Tunnel. The presence of several drastic area changes. like the area
contraction at the end of the driven tube and the design of the plug after the secondarv
diaphragm lead to development of a complex flow field. The following sections describe

the grid generation method and the simulated flow.

4.2 Grid Generation and Boundary Conditions

The flow domain used in these calculations included sections from the shock tube.
the region of area contraction at the end of the driven tube. shock-reflection region
and the nozzle plug. The simulation is divided over these blocks and a successive-

block approach is emploved. The tunnel is svmmetric about the centerline. so only
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the upper half is modeled in the computational domain. A symmetryv condition is
applied at the centerline, and adiabatic no-slip boundary conditions are applied on
all solid wall boundaries. The initial grid for each block was generated by a simple
algebraic method, using the hyperbolic tangent stretching function [32|. In regions of
high curvature a Poisson elliptic grid generator [32] was emploved to produce smooth
grids. Strong clustering was enforced at the wall to properly resolve the boundary laver.
Approximately, 15 cells were used in the boundary layer. This is sufficient to resolve
the boundary layer with Roe’s scheme, which was used for this computation. The grid
system is kept unchanged during the calculation thereby avoiding the possibility of

contamination of the flow due to spurious numerical signals.

The size of the mesh in each of the blocks generated is as follows. A 104 x T8 grid

is used for the shock tube, which forms the first block of the simulation (figure 4.1).
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Figure 4.1. Grids for the shock tube.






