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ABSTRACT

TRANSIENT FLOW ANALYSIS OF A

SUPERSONIC LUDWIEG-TUBE WIND TUNNEL
Publication No.

Chun-Min Wang, M.S.

The University of Texas at Arlington, 1989

Supervising Professor: Donald R. Wilson

The purpose of this thesis is to calculate the
starting time and to determine the optimum diaphragm position
for the UTA supersonic Ludwieg-tube wind tunnel. The
configuration and the performance evaluation of the wind

tunnel are described.

The method of characteristics was employed to develop
an unsteady quasi-one-dimensional flow computer code for the
purpose of analyzing transient flow phenomena during the
starting procedure. The results of calculations with
different diaphragm positions are presented, and an optimum

location for the diaphragm is recommended.
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a Nondimensional speed of sound
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Cp Specific heat at constant pressure
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P Right running characteristic variable
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Subscripts

o Reference conditions

S Shock conditions

C.s. Contact surface conditions

L Left-hand side of a discontinuity surface
R Right-hand side of a discontinuity surface
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CHAPTER 1
INTRODUGCTION

The preliminary design of a supersonic wind tunnel for
the Aerospace Research Center at UTA was done by Kim in 1986
(Ref. 1). Both conventional blow-down and Ludwieg-tube
concepts were evaluated. The Ludwieg-tube concept was
selected for development of the supersonic wind tunnel
because it would provide superior flow quality, increased

productivity, and substantial cost savings.

The principle of the Ludwieg or pressure tube tunnel
was proposed in 1955 by Ludwieg (Ref. 2). This type of
tunnel is basically a simplified blowdown wind tunnel with
the storage tank replaced by a long tube. Figures 1.1 and
1.2 show the basic concept of the Ludwieg tube tunnel (Ref.
3). The charge tube is closed at one end, and at the other
end are located a convefgent-divergent nozzle, test section
and diffuser. Figure 1.2 shows the basic wave diagram for a
diaphragm located upstream of the nozzle. When the
diaphragm is ruptured, the centered expansion waves propagate
into the charge tube and accelerate the high-pressure gas
towards the nozzle. At the same time, a shock wave and a

contact surface are created in the nozzle and test section
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downstream of the diaphragm. The expansion fan travels
upstream through the tube, is reflected at the closed end,
and returns to the nozzle throat. During the time interval
between rupturing the diaphragm and return of the head of the
reflected expansion to the nozzle throat, steady flow ahead
of the nozzle is maintained. After the nozzle starting
process 1is completed, steady supersonic flow can be
established in the test section that is maintained until
flow-breakdown associated with arrival of the reflected

expansion wave occurs.

Figure 1.3 indicates an alternative arrangement, where
the diaphragm is located downstream of the test section.
(Ref. 4). The wave diagram for this case is somewhat
different, and the starting process is more complicated. For
this case, the establishment of choked flow at the nozzle
throat 1limits the width of the expansion wave propagating
into the charge tube, since these waves cannot propagate
upstream through a supersonic flow. A normal shock wave
forms and gradually moves to the nozzle exit. When the shock
passes through the test section, a steady supersonic flow is

established in the test section.

The 1location of the diaphragm in UTA supersonic
Ludwieg-tube wind tunnel needs to be analyzed in detail,
because the configuration is different from those which were

previously discussed. Since the charge tube of the UTA
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Ludwieg tube tunnel (1 ft. in diameter) is much smaller than
nozzle inlet (2 ft. in diameter), a settling chamber will be
added. The object of this thesis is to develop an
unsteady, quasi-one-dimensional flow code which will be
employed not only to calculate the starting time but also to
analyze the transient flow phenomenon associatd with

different diaphragm positions.

The starting time is defined as the time interval
between diaphragm rupture and when the starting shock
travels out of the test section and the flow in the test
section becomes steady. The end of the test time is defined
as the time when the head of the reflected expansion fan
returns the nozzle throat. Thus, the useful running time is
the difference between the end of the test time and the

starting time.

The governing equations for unsteady quasi-one-
dimensional flow are hyperbolic. Thus a marching-type
numerical method can be applied to obtain the solution of the
flow field. The time-dependent method of characteristics
was chosen for the solution technique due to its ability to
correctly track the formation and movement of shock waves
(Refs. 5, 6, 7, 8). Rudinger (Ref. 9) proposed a solution
technique using wave diagrams to solve the compressible
flow in a duct, which is an efficient way to incorporate

discontinuities into the flow field.




CHAPTER 2

LUDWIEG TUBE TUNNEL

2.1 Tunnel Description

The UTA supersonic Ludwieg-tube wind tunnel consists
of a long tube that serves as the storage reservoir, plenum
chamber, a convergent-divergent nozzle, test section and
diffuser, and an outlet into the atmosphere (See Figure 2.1).
Several major components, including the charge tube,
supersonic nozzle and test section, were already available.
Moreover, the preliminary design of a diffuser and plenum

chamber was accomplished by Kim (Ref. 1).

2.1.1 Charge Tube

The charge tube is one foot in diameter and eighty-
eight feet in 1length. Ludwieg suggested that the 1linmit
length of the charge tube should be about one hundred tube
diameters if the stagnation pressure loss caused by boundary
layer growth is to be held below one percent (Ref. 2). Thus,
in this study, the stagnation pressure loss in the charge
tube should not exceed one percent. The maximum working

pressure of this tube is seven hundred psia.
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2.1.2 Plenum Chamber

Figure 2.2 shows the proposed design of the plenum
chamber. The chamber is a cylindrical shell, two and one-
half diameters long. The plenum chamber is located upstrean
of the nozzle entrance, and provides a low velocity section
for settling to obtain uniform flow. Because the nozzle has
a round-to-ractangular plenum transition duct, the plenum
design provides a contraction ratio of 12.5 : 1 based on
nozzle exit area, and flow velocity will be 50 ft./sec. at

M=1.25 and only 5 ft./sec. at M=4.0 (Ref. 1).

2.1.3 Supersonic Nozzle

The variable area, supersonic nozzle is an AMRAD model
GF3-6 nozzle with Mach number capability from 1.25 to 4.0
(Figure 2.3). The nozzle unit is 35 in. in length and has a
6 in. x 6 in. test section. The nozzle unit contains a rigid
throat section and integral downstream flexible plates, and
a round-to-rectangular plenum transition duct attached to
the upstream of the nozzle entrance. The maximum allowable
stagnation pressure is 1limited to 315 psia for M=2.6 or
higher, and follows the curve shown in Fig. 2.4 below M=2.6 .
The maximum stagnation temperature is 350°F. The nozzle area
ratio, which is a function of the test section Mach number,

is continuously variable, and can be preset to a fixed

position to give any Mach number between the limits of 1.25
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to 4.
2.1.4 Test Section and Diffuser

The test section has a rectangular cross-section 6
inches by 6 inches and is 8 inches in length. Both closed
test sections for aerodynamic testing and semi-open jet test

sections for propulsion testing are envisioned.

Figure 2.5 shows a diffuser design which is modified
from a conventional subsonic diffuser geometry. The original
diffuser is 11 D of constant area duct followed by a 6°
divergent diffuser. The diffuser of the UTA ILudwieg tube
tunnel will have a multicellular constant area duct which can

decrease the overall length and avoid increased starting

times.

2.2 Theory of Tunnel Operation

The basic theory of the Ludwieg tube tunnel operation
has been discussed in Ref. 2, 4, 10, and only a summary will
be given here. In those analytical procedures, it was
assumed that the expansion fan emanated from the nozzle
throat in place of the diaphragm position (Fig. 2.6). When
the flow ahead of the nozzle inlet is subsonic, the duration

of steady flow can be obtained as

(pr1)/20p-1)
2 { 1+ 7;1 Ml}

(2.1)
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where M; is the Mach number of the flow behind the expansion
fan, and t, = Xo/35 is the time which would be taken for a

disturbance to travel at sonic speed along the tube with the

gas at rest.

The length of the tube, Xy, over which the Mach number

M; persists for any length of time is given by

1 .2 S
1 _ 4 Y- }2(7—1)
= Ml){1+—2 M, 2.2)

The relationship of the nozzle throat area Ay and the

tube area A can be expressed as

1 v+1

¥ 2 | 24-D

A1 H-—2 M

AT M s (2-3)

2

The stagnation conditions for the flow through the

nozzle can be calculated by

1 .2
E_{ﬁ}z_ HTM (2.4)
To 1 2 Tl V2 )
(1+5 Ml)

where the subscript s refers to the stagnation condition.
Expressions for the stagnation pressure and density ratio

( y=14 ) follow from the isentropic relationships:
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2

Ps _[ & |¥I

Po | a (2.5)
2

Ps | 3 [ ¥!

b (2

It is concluded that the stagnation conditions for
nozzle flow are lower than the storage conditions, because
the total energy is not constant through an unsteady
expansion. Thus, in order to avoid a large reduction of the
stagnation pressure and temperature, it is desirable to keep
the Mach number small; that is to say the diameter of throat
should be small compared with the pipe diameter (Fig. 2.7).
The useful running time is slightly influenced by M, and area

ratio, but it is primarily dependent on the length of the
charge tube (Fig. 2.8).
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CHAPTER 3

MATHEMATICAL ANALYSIS

3.1 Approach

In this chapter the mathematical analysis of unsteday
quasi-one-dimensional flow is discussed. Usually, the
transient compressible flow problem is solved by either a
'shock fitting' method or a 'shock capturing' method. The
first approach, the shock fitting method, employs the Euler
form of the basic conservation equations. Since shock waves
are treated as discontinuities and the fundamental
differential equations can not be applied across
discontinuities, the Rankine-Hugoniot equations are used to
calculate the jump conditions across a shock wave. The
alternative approach, the shock capturing method, uses the
conservation form of the basic conservation equations.
Because conservation equations are wused, the fluxes pu,
puz, pul, are conserved across shock waves. The flow can be
analyzed as a continuous flow process. However, a
disadvantage is that the shock is numerically smeared rather

than discontinuous and oscillations appear in the vicinity of

the shock waves. The extra computation logic and computer

20




21

time required to track the formation and movement of shock
waves is the major disadvantage of the shock fitting method.
But, the shock fitting method does correctly represent the
physics of the flow, thus a shock fitting method employing
the method of characteristics was chosen to develop the

transient flow code used for analysis of the tunnel starting

problem.

3.2 Governing Equations

If a flow passes through a duct having a slowly varying
cross-section, and the duct height is small compared to the
radius of curvature of the axis of the duct, the flow in the
duct can be represented by a quasi-one-dimensional flow
model. TIn this case, the flow properties are function of x
and t only, and are assumed to be uniform across any cross
section in the duct. The fundamental equations can be
obtained by applying the differential forms of the
conservation equations to the flow model illustrated in
Figure 3.1. The flow model is assumed to be an inviscid
adiabatic flow in the absence of work and body force.
Furthermore the flow is assumed to be an ideal gas, and the
values of the specific heats are constant. The basic
differential equations are derived in numerous texts, and the

final forms of the equations are listed here (Refs. 7, 8, 9,

11, 12).
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pdA+pA, dx .
o= E
f pu(Adx) DA+ (pAdx
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Fig. 3.1 Flow Model for the Continuity and Momentum Equation
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1. Continuity Equation

d(pA) = d(pua) _ (3.1)
ot T ox =0

2. Momentum Equation

Du  du au_ oP
P =P 3 +Pu ox  ox (3.2)

3. Entropy Condition

Ds 0s gs
Dt~ ot TU ox =0 (3.3)

Equation 3.3 means that the entropy of each streamline
is constant; however, different streamlines may have
different value of entropy. Flows of this type are
encountered, for instance, when a compression wave develops

into a shock wave that is growing stronger.

4. The Equation of State

a2=‘y%=7RT (3.4)
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By definition, the enthalpy per unit of mass of a substance,

denoted by h, is
h=u+pv (3.5)

Differentiating equation 3.5 yields

dh=du+(pdv+vdp) (3.6)

If s denotes the entropy per unit mass for a system, by

definition

_4dQ du+pdpy

ds T T (3.7)

Substituting for du from 3.6 into equation 3.7 gives
Tds=dh-vdp .- (3.8)

For an ideal gas du = C,dT , dh = cpd'I', thus substituting

equation 3.5 into equation 3.8 gives

dT dP
ds=Cp—-R5- (3.9)

Thus using ( )o to denote a reference state, the entropy
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change between the reference state and any other arbitrary

state is given by

T 71 )
s—sO=CplnT:)-—Cp ¥ lnE (3.10)

Hence, the governing equations for unsteady quasi-one-

dimensional flow are equations 3.1 , 3.2 s 3.3 ,and 3.10 .

3.3 Derivation of the Characteristic Relation

For unsteady, quasi-one-dimensional flow , the method
ofvcharacteristics requires a choice of three dependent
variables to integrate the compatibility equations along
characteristic 1lines. The local speed of sound, the flow
velocity, and the specific entropy are widely used for
convenience. To simplify the analysis procedures,

rondimensional forms of the dependent variabls are defined by

U S S= %
S

where the star superscript refers to dimensional quantities.
Because there are three dependent variables-- a, u, and s,

three equations are required. One of these is the entropy

condition.
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DS S s
Dt - ot Tk T (3.3)

The others are to be derived below.

Equations 3.1 and 3.2 can be rewritten in nondimensional

form as follows:

Continuity

dlnp dlnp du  JdhA
. T 'Tox Tax -u ox (3-11)

Momentum

du du _ a? dlnp (3.12)
ot Yk =T Y 9Jx

The derivatives of P and P in these equations may be

expressed in terms of derivatives of a and S. Equation 3.4

and equation 3.10 can be combined to yield the following
useful relations
(=)
17/ _y(s-s,)
P=a eV (3.13)

pma TS (3-3¢)
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Substituting equations 3.13 and 3.14 into equation 3.11, one

obtains

2 o0a 2 da du

dlnA oS oS
+ =- =—+u—=— .
¥1 ot " 1" ox T35 A 5% +ya( ot "YU ) (3-13)
Similarly, equation 3.12 can be expressed as
du du 2 oa ds
TR e b L (3-16)
If equation 3.15 is added to equation 3.16 , We obtain
9 (u+ 2 a)+(u+a)—2—(u+ 2 a)
ot 1 ox 1
(3.17)

=-au

dlnA +Ya( oS 0S )

ox KRS

The left hand side of equation 3.17 represents the derivative

2
of the parameters u+;:Ta in a direction in the x, t

plane, such that

dx
- =u+a
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Thus we set the differential operator

O ——2—+(u+a)——-
dt ~ ot F) (3.18)
and define the Riemann invariant
_ 2
P—u-i--;Y:-l-a (3.19)
Thus, equation 3.17 can be rewritten as
8-i-P o(lnA) DS +a 8+S (3.20)

ot

0S aS ) (3.21)

The left hand side of equation 3.21 represents the derivative
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of the parameters u_ila in a direction in the x, t
’Y_
pPlane, such that
dx =u-a
dt

Thus set the differential operator

L 9
- o tlu—a)—=— (3.22)
and
Q=u-ﬁa (3.23)
Then, equation 3.21 can be rearranged as
aétQ =au a(g:{A) -a(y1) ]l))f +a SgtS (3.24)
The final results consisting of the governing

equations, the 1linear first-order compatibility equations,
and the characteristic equations are summarized in Table 3.1.
Figure 3.2 illustrates that the characteristic S, P and ©Q
(the pathline Co» aad right-running and left-running Mach

lines, C, and C_ in some texts) pass through every point in
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Table 3.1

Governing Equations, First-Order Compatibility Equation,
and Characteristic Variables for Unsteady Quasi-One-
Dimensional Flow

d(pA) . d(puA) -

G i E ti
overning Equations 31 3% 0
Du= au+uau =_ap
Dt Pt  PYex T X
p
T v-1 p
S$-5=C,In—-C In—
T T, Py Po
Linear First-Order Compatibility Equation
5_Q 9(In A) DS 5.8
—_—— = au ——————— -3 (y-1 a
5t 3 x R T
5, P 2(In A) Ds 5, S
51 Ty rab-Vgrra—s
DS ( 0S 0S8 )
= +U — =0
Dt ot d

Dependant Variables
a,u,S

Characteristic Variables

2
P=u+—ag n —=u+a
1 dt
Q=u——2—a in ﬂ-=u—a
1 dt
S in ..dL=
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Solution point
wave

Known initial Points

(a)

Al Qg shock

(b)

Solution point

Fig. 3.2 (a) Intersection of all Three Characteristics at
Common Point
(b) Shock Formation
(c) The Modified Inverse Marching Method Based On

Q Wave
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the x, t plane. Therefore, all of the phenomena in the flow
field including discontinuities (shock wave, contact surface)
and their interactions can be calculated by means of a
modified inverse marching method base on Q characteristics.
These three characteristic curves were referred to as P in
the direction u+a, Q in the direction u-a , and S in the
direction u . Since S follows a curve of the particle path,
two curves of this family will never cross. However, if two
characteristic curves of the same family (either P or Q)
meet, that indicates the formation of a shock wave.
Depending on whether the P or Q waves merge, the shock is
denoted as P shock or Q shock (Fig. 3.2 b). Figure 3.2 c
illustrates that the solution point is located at the
intersetion of a t-line and Q characteristics. The advantage
of this method is that can easily detect the initiation and
movement of a Q shock (left-facing shock). However, the
interpolation is required at the intersection of the
previous t-line with two characteristic curves. The smearing
appears when the interpolation is based on the value of flow
properties at a point outside of the domain of dependence of
the solution point. Therefore, the Courant Friedrich Lewy
(CFL) stability criterion must be satisfied to insure that

the solution is stable.

The method of characteristics for unsteady, quasi-one-

~dimensional flow is developed by Zucrow and Hoffman (Ref. 8),
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and Warmbrod and Struck (Ref. 11). The detailed description
of the calculation procedure is reported in these references.
In this section, brief flow charts illustrating the
calculation procedure for interior points and

discontinuities are presented.

Figure 3.3 illustrates the flow chart and the finite
difference grid for an Interior point. The location and the
flow properties of the solution point can be calcuiated step
by step. Meanwhile, the characteristic variables of the

solution point can obtained by

r /_ —l_ﬂ) +(—au—1—£) 1
AUx & ; A dx J; a; + a,
Pi=Py+ 3 At+—-—2-—(Sl—Sz) (3.25)
(aui:‘i) +(au_l_£)
A dx A dx a,+a
Q= Qs+ 42 . At+%(sl-s4) (3.26)

Because the fundamental differential equations cannot
be applied across discontinuities, a shock wave (the merging
of the same family of characteristic curves) divides the flow

field into two parts which must be treated separately.

Since the change of the flow properties across a shock
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k> Estmateu, a ,S at point 1

interpolation for u, a ,S at point 3
A
Solve the equation 3.25 , 3.26
forP ,Q at point 1
Calculate u and a at point 1
no Solution
> Convergence complete
t
A
, solution point
A 4
1 Q wave
t
» X

Fig. 3.3 Flow Chart of Calculation of an Interior Point
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wave can be considered as taking place instantaneously, the
flow préperties on the two sides of the shock wave can be
matched as if the flow was steady. Therefore, as
illustrated Fig. 3.4, the jump conditions across a moving
shock wave may be obtained by transforming the moving shock

wave into a stationary frame of reference associated with the

Rankine~Hugoniot relations.

P1Vi=pa Vy (3.27)

P1+py Vi=py+pp V2 (3.28)
vZ V2

h1+-2—1=h2+—2% (3.29)

Moveover, the change of entropy across the shock wave

is expressed as

AS =

¥-1 r+ 1) M (1) M,

2+(y-1)M2 2_ i—M2
2 | v 2+ DM [2yME ) 1h_2a-MO g,

The propagation velocity of a shock wave propagation
is dependant on whether the P or the Q wave merge. The

following relations apply.
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Moving normal shock

p2 P1

P2 w P1

Uy ——> — — Uy

1
>
X
Stationary normal shock
P2 P1
P2 P

Vo=, - W

-<— V1=U1—W

Fig. 3.4 Schematic of Moving Shock
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u, + a1Ms for a P shock

(3.31)
W= uy - alMs for a Q shock

Equations 3.27 - 3.29 also may be applied for the
calculation procedure of a moving contact surface, with the

additional boundary conditions

P, = P, (3.32)

Fig. 3.5 illustrates the flow chart of calculation of a
shock wave, and Fig. 3.6 presents the flow chart of
calculation of a contact surface. Moreover, Figures 3.7 and
3.8 show the flow chart of the calculation procedure for
interaction of discontinuities. Finally, this computer code
is employed to solve the simple shock tube problem, and the

solution is in good agreement with the exact solution.
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Fig. 3.7 Flow Chart of Calculation of an Intersection of



Intersection of
shock and c.s.

Interior point
unit process

yes
<P Guess uj
I !
Solve the Rankine-Hugoniot
equations forasz , Ss
¥ o
S3=S4 ,84=2age 2 S-S
‘ Y
Calculate ug4
Uz = Uy
no

< Convergence
t
A .

Expansion

wave C.S

X t
to
I.S. «

Fig. 3.8 Flow Chart of Calculation of an Intersection of

Discontinuities

41




CHAPTER 4

RESULTS AND DISCUSSION

4.1 Object

Usually, the useful running time depends on the length
of the charge tube; the longer the charge tube, the longer
the useful running time. Since the length of the charge tube
is fixed for the UTA Ludwieg tube, the only way to increase
the useful running time is to reduce the starting time. One
potential method for reducing the starting time is location
of the diaphragm at an optimum position so as to reduce the
time associated with formation and convection of the starting
shock system through the test section.

The specific objectives of this study were to
1. Analyze the starting phenomena for the proposed
supersonic Ludwieg-tube wind tunnel for different
locations of the diaphragm.
2. Determine an optimum location to minimize starting

time.

The mechanical problems associated with the set-up of
the wind tunnel and the tunnel calibration test program are

beyond the scope of this thesis.
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4.2 Initial Ccondition

The configuration of the wind tunnel is shown in
Figure 4.1 . The possible diaphragm locations are in
the following positions:

Case 1, exit of the diffuser.

Case 2, middle of the diffuser.

Case 3, downstream of the test section.
Case 4, upstream of the nozzle.

Case 5, downstream of the charge tube.

The calculation of each case is done under the
following assumptions:

(1) The test medium on each side of the diaphragm is

dry air, and the value of specific heat ratio is

1.4 .

(2) The effect of boundary layer growth is neglected.

The flow properties on the right side of the diagragnm
before rupture is chosen to be the reference condition.

Moreover, it is convenient to choose the standard atmospheric

condition to be the initial condition. Thus

P, = 2116.2 1b./ft.2
a; = 1116.4 ft./sec.
and the temperature of the air on each side of the diaphragm

is 288.2°k . The star superscript refers to dimensional




44

suotr3Tsod wbeayderq ferausjzod T°v °*BTJ

uoljoes 1se] lequeyn Buines

eqn. ebieyn

‘_omE:QIIIIYFVTIm_NSZ V‘A

suoT3Tsod wbeaydetq

-

bt —

>l







