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NUMERICAL SIMULATION OF DETONATION
PROCESS IN A TUBE
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Abstract

A two-dimensional time-accurate numerical model to simulate hydrogen{air detonation wave prop-
agation and re°ection was developed. To construct an e±cient numerical tool, while maintaining a
reasonable accuracy, a two-step global model was selected and validated for a hydrogen{air mixture.
The inherent sti®ness in the chemical reaction model was properly taken care of by a point-implicit
treatment of source terms, together with the application of a \local ignition averaging model" to
each mesh where ignition starts. Calculations were performed to select a scheme with adequate
temporal and spatial resolution for modeling the physical process for practical calculations. Cal-
culations were compared against Chapman{Jouguet theory as well as against experiment.

Key Words: Detonation, de°agration-to-detonation transition, Chapman{Jouguet,
ignition

1 INTRODUCTION

Despite the destructive nature of detonations, there
is considerable interest recently in exploiting detona-
tions for certain applications, such as in propulsion [1]
and in high-enthalpy ground test facilities [2]. While
there are many unresolved fundamental issues regard-
ing initiation, transition and propagation, for exam-
ple, numerical modeling for obtaining engineering so-
lutions are sought for the above-mentioned applica-
tions. Time-accurate computational °uid dynamics
(CFD) methods can be used to perform cycle analysis
and performance optimization of pulse detonation en-
gines from the simulations of the corresponding °ow
¯elds with variations in design parameters. These
methods can also be used to support the development
of detonation drivers.

An unsteady numerical simulation model for the
above purposes, emphasizing accuracy and e±ciency,
is described. The objective is to construct a
two-dimensional time-accurate numerical simulation
model, e±cient enough for design parametric studies
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while maintaining a reasonable accuracy. The model
is constructed to formulate the physical phenomena as
precisely as possible, including chemical and thermal
non-equilibrium, and to numerically solve the result-
ing mathematical formulation as accurately as possi-
ble. Novel aspects of this work include a combina-
tion of point-implicit treatment and a \local ignition
averaging model" (LIAM) applied to the global two-
step reaction model for e±cient time-accurate solu-
tion of a propagating detonation wave. The partition
of internal energy is based on the two-temperature
model, and the vibrational energy of each species
is obtained by subtracting out fully-excited transla-
tional and rotational energy from the total internal
energy. Roe's °ux-di®erence split scheme is combined
with a Runge{Kutta integration scheme for an accu-
rate capture of the shock wave in space and in time.
Extensive calculations are performed with numerical
schemes of di®erent orders in space and time, and with
di®erent mesh sizes to select the proper scheme and
mesh size to provide adequate resolution of the phys-
ical process. The present model is validated by com-
paring the calculated data with those obtained from
Chapman{Jouguet theory and experiments.

2 MATHEMATICAL FORMULATION

2.1 Governing Equations

The time-dependent conservation equations governing
an inviscid, non-heat-conducting, reacting gas °ow in
which thermal nonequilibrium is modeled with a two-
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temperature approximation are written in the conser-
vation law form. This form is advantageous in numer-
ical simulations since it can correctly capture shock
waves [3]. For a two-dimensional Cartesian coordinate
system, the system of equations take the form

@U

@t
+
@F

@x
+
@G

@y
= S (1)

where U is the vector of conserved variables, F and G
are the convective °ux vectors, and S is the vector of
source terms. Each vector is written as

U =

26666664
½s

½u

½v

½ev

½E

37777775; F =
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½su

½u2 + p

½uv

½uev

½uE + pu

37777775;

G =

26666664
½sv

½uv

½v2 + p

½vev

½vE + pv

37777775; S =

26666664
ws

0

0

wv

0

37777775 (2)

The subscript s = 1; 2; 3; : : : ; Ns where Ns is the
number of species. The ¯rst Ns rows represent species
continuity, followed by the two momentum conserva-
tion equations for the mixture. The next row describes
the rate of change in the vibrational energy, and the ¯-
nal row is the total energy conservation equation. The
terms u and v are the velocities in the x and y direc-
tions respectively, ½ is the mixture density, p is the
pressure, ev is the vibrational energy, E is the total
energy per unit mass of mixture, ½s is the s-th species
density, ws is the mass production rate of species s per
unit volume, and wv is the vibrational energy source
term which is de¯ned as

wv =
X
s

Qvs +
X
s

wsed;s (3)

The ¯rst term on the RHS, Qvs, represents the vi-
brational energy exchange rate of species s due to the
relaxation process with translational energy. The sec-
ond term on the RHS, wsed;s, represents the amount
of vibrational energy gained or lost due to production
or depletion of species s from chemical reactions.

2.2 Thermodynamic Properties

In general, the internal energy of each species includes
a portion of the internal energy in thermodynamic
equilibrium and the remaining portion in a nonequi-
librium state. The equilibrium portion of the internal

energy is the contribution due to translation and inter-
nal modes that can be assumed to be in equilibrium at
the translational temperature T . The remaining non-
equilibrium portion is the contribution due to internal
modes that are not in equilibrium at the translational
temperature T , but may be assumed to satisfy a Boltz-
man distribution at a di®erent temperature.

For the temperature range of interest, the rotational
mode is assumed to be fully excited and in equilibrium
with the translational temperature T , while the elec-
tronic excitation and free electron modes can be safely
ignored. The vibrational mode remains as the only en-
ergy mode that could be in nonequilibrium with the
translational temperature T . Thus, the species inter-
nal energy based on a two-temperature model can be
written as

es = eeq;s(T ) + ev;s(Tv) (4)

where eeq;s is the equilibrium portion of the internal
energy and ev;s is the vibrational energy which is not
in thermodynamic equilibrium. The equilibrium por-
tion of the energy can be further de¯ned as

eeq;s =

Z T

Tref

(Csv;t + C
s
v;r) d¿ + es;o (5)

where Tref is the reference temperature, es;o is the en-
ergy of formation at the reference temperature, and
Csv;t and C

s
v;r are the translational and rotational por-

tion of the speci¯c heat at constant volume, respec-
tively. Since the translational and rotational modes
are assumed to be fully excited, Csv;t and C

s
v;r can be

written as

Csv;t = 1:5
¹R=Ms (6)

Csv;r =

"
¹R=Ms; diatomic molecule

1:5 ¹R=Ms; polyatomic molecule
(7)

where ¹R is the universal gas constant and Ms is the
molecular weight of species s. The energy of forma-
tion es;o can be obtained from readily available heat
of formation data as

es;o = hs;o ¡
¹R

Ms
Tref (8)

Therefore, the equilibrium portion of energy can be
written as

eeq;s(T ) = Ks

¹R

Ms
(T ¡ Tref)¡

¹R

Ms
Tref + hs;o (9)

where Ks = 1:5, 2.5, 3.0 for monatomic, diatomic or
linear polyatomic, and nonlinear polyatomic species
respectively.
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The heat capacity of the vibrational energy mode
can be obtained from the fact that the translational
and rotational heat capacities are independent of tem-
perature. This can be evaluated by utilizing a readily
available curve ¯t for total heat capacity evaluated at
the temperature Tv and subtracting out the constant
contributions from the translation and rotational heat
capacities, namely,

Csv;v(Tv) = C
s
v(Tv)¡ Csv;t ¡ Csv;r (10)

where

Csv(Tv) = C
s
p(Tv)¡

¹R

Ms

Csv and C
s
p are speci¯c heats at constant volume and

constant pressure respectively. Curve ¯t data for
Csp(T ) can be found in the following form [4]:

Csp(T ) =
¹R

Ms

5X
k=1

AskT
k¡1 (11)

Therefore, Csv;v can be obtained as follows:

Csv;v(Tv) =

266664
¹R

Ms

Ã
5X

k=1

AskT
k¡1
v ¡ 7

2

!
; diatomic

¹R

Ms

Ã
5X

k=1

AskT
k¡1
v ¡ 4

!
; polyatomic

(12)

The species vibrational energy ev;s can be obtained by
integrating Csv;v such that

ev;s(Tv) =

Z Tv

Tref

Csv;v(¿ )d¿ (13)

2.3 Chemical Kinetics

For accurate modeling of a detonation wave, especially
in the detonation front where rapid chemical reactions
take place in the shock compressed region, species
continuity equations based on the chemical kinetics
should be solved together with the °uid dynamic equa-
tions to account for possible chemical nonequilibrium.
The mass production rate of species s from chemical
reactions can be written as [5]

ws =Ms

NrX
r=1

(¯s;r ¡ ®s;r)(Rf;r ¡Rb;r) (14)

where Ms is the molecular weight of species s, Nr is
the number of reactions, ®s;r and ¯s;r are the stoichio-
metric coe±cients for reactants and products, respec-
tively, in the r reaction. The forward and backward

reaction rate of the r reaction, Rf;r and Rb;r, respec-
tively, are de¯ned by

Rf;r = 1000

"
Kf;r

NsY
s=1

(0:001½s=Ms)
®s;r

#
(15)

Rb;r = 1000

"
Kb;r

NsY
s=1

(0:001½s=Ms)
¯s;r

#
The factors 1,000 and 0.001 are required to convert
from CGS to MKS units, since most reaction rate data
in the literature are found in CGS units.

The forward reaction rate coe±cient can be ex-
pressed by

Kf;r = Af;rT
Nf;r exp(¡Ef;r= ¹RT ) (16)

where Ef;r is the activation energy of the r-th for-
ward reaction. The values of parameters Af;r, Nf;r,
Ef;r are usually found tabulated according to the re-
actions involved. The backward reaction rate coe±-
cient is evaluated using the equilibrium constant for
the reaction such that

Kb;r = Kf;r=Kc;r (17)

2.4 Vibrational Energy Relaxation

The energy exchange between vibrational and trans-
lational modes due to intermolecular collisions is well
described by the Landau{Teller formulation where it
is assumed that the vibrational level of a molecule can
change by only one quantum level at a time [6, 7]. The
resulting energy exchange rate is given by

Qv;s = ½s
e¤v;s(T )¡ ev;s
< ¿s >

(18)

where e¤v;s(T ) is the vibrational energy per
unit mass of species s evaluated at the local
translational¡rotational temperature, and < ¿s > is
the averaged Landau{Teller relaxation time of species
s given by [5]

< ¿s >=

NsX
j=1

nj¿sj

,
NsX
j=1

nj (19)

where ¿sj is the vibrational¡translational relaxation
time of species s caused by intermolecular collision
with species j, and nj is number density of species j.

The Landau{Teller interspecies relaxation time ¿sj
can be obtained in seconds using the Millikan{White
semi-empirical expression [8]

¿sj =
1

p
exp

h
Asj

³
T¡1=3 ¡ 0:015¹1=4sj

´
¡ 18:42

i
(20)
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where p = pressure in atm, Asj = 1:16 £ 10¡3¹sjµsj ,
¹sj = MsMj=(Ms + Mj) is the reduced mass, and
µsj = characteristic vibrational temperature of a har-
monic oscillator. The vibrational energy relaxation
rate can be simpli¯ed using [5]X

s

½s
e¤v;s ¡ ev;s
< ¿s >

¼
X
s

½sC
s
v;v

T ¡ Tv
< ¿s >

¼ ½Cv;v
¿v

(T ¡ Tv) (21)

where

1

¿v
=

X
s

½s=(Ms < ¿s >)X
s

½s=Ms

This approximation reduces the number of species de-
pendent parameters and simpli¯es the evaluation of
the vibrational relaxation as a single relaxation term
multiplied by the di®erence in the translational and
vibrational temperature. When a point implicit for-
mulation is used on the source terms in the numerical
algorithm, the above approximation greatly simpli¯es
an implicit treatment of the temperature di®erence
which drives the relaxation process.

3 NUMERICAL FORMULATION

3.1 Finite-Volume Formulation

A discretized set of equations is derived from the gov-
erning partial di®erential equations using the ¯nite-
volume method. The advantage of this method is its
use of the integral form of the equations, which en-
sures conservation, and allows the correct treatment
of discontinuities [3]. In the following derivation, the
cell-centered approach will be described.

For an arbitrary volume , enclosed by a boundary
¾, the governing equations in integral form can be
written as

@

@t

ZZZ
U d+

I
¾

~H ¢ ~n d¾ =
ZZZ

S d (22)

where

~H = (F; G)

The unit vector ~n is normal to the in¯nitesimal area
d¾ and points outwards. The ¯rst step to discretize
the above equation is to introduce volume averaged
values of the conserved variables and the source term
as follows:

< U >=
1



ZZZ
U d; < S >=

1



ZZZ
S d (23)

These volume averaged variables are substituted into
the integral form of the governing equations to yield

@

@t
(< U > ) +

I
¾

(F;G) ¢ ~nd¾ =< S >  (24)

For a two-dimensional Cartesian coordinate system
where the computational cell is de¯ned by two con-
stant lines in both the x and y directions, the surface
integral can be split into four contributions, one from
each bounding surface. When the index of the cell
centered variables is (i; j), Eq. (24) can be written asI

¾

(F;G) ¢ ~nd¾ =
ZZ

¾i+1=2

F d¾ +

ZZ
¾i¡1=2

F d¾

+

ZZ
¾j+1=2

Gd¾ +

ZZ
¾j¡1=2

Gd¾

(25)

Area-averaged values of °uxes can be de¯ned such that

< F >i+1=2 =
1

¾i+1=2

ZZ
¾i+1=2

F d¾;

< G >j+1=2 =
1

¾j+1=2

ZZ
¾j+1=2

Gd¾ (26)

where the bounding surface areas ¾i+1=2, ¾j+1=2 actu-
ally represent cell face lengths in the two-dimensional
Cartesian coordinate system. After substituting these
de¯nitions of averaging into the Eq. (24) and drop-
ping the brackets, the following discrete form of the
conservation equations written in a two-dimensional
Cartesian coordinate system can be obtained:

@Ui;j
@t

= ¡
µ
Fi+1=2

¾i+1=2

i;j
¡ Fi¡1=2

¾i¡1=2
i;j

¶
¡
µ
Gj+1=2

¾j+1=2

i;j
¡Gj¡1=2

¾j¡1=2
i;j

¶
+Si;j (27)

3.2 Point Implicit Time Integration

Nonequilibrium °ows involving ¯nite-rate chemistry
and thermal energy relaxation often can be very dif-
¯cult to solve numerically because of sti®ness. The
sti®ness in terms of the time scale can be de¯ned as
the ratio of the largest to the smallest time scale such
that

Sti®ness = ¿ largest= ¿smallest

where ¿ can be any characteristic time in the °ow
¯eld. For reactive °ow problems, there can be several
chemical time scales and relaxation time scales in ad-
dition to the °uid dynamic time scale associated with
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convection. The sti®ness parameter can be as high as
O(106). The point implicit formulation evaluating the
source terms at time level (n+1) has been an e®ective
method used to numerically integrate sti® systems [9].
The point implicit treatment is known to reduce the
sti®ness of the system by e®ectively rescaling all the
characteristic times in the °ow ¯elds into the same
order of magnitude.

Equation (27) is rewritten here with the source
terms evaluated at the time level (n+ 1) as

@Ui;j
@t

= ¡
µ
Fni+1=2

¾i+1=2

i;j
¡ Fni¡1=2

¾i¡1=2
i;j

¶
¡
µ
Gnj+1=2

¾j+1=2

i;j
¡Gnj¡1=2

¾j¡1=2
i;j

¶
+ Sn+1i;j

(28)

The source vector is then linearized about the present
time level such that

Sn+1 = Sn +

µ
@S

@U

¶n
¢U (29)

When simple Euler time integration is used, substi-
tuting this linearization into the above equation and
rearranging yields∙

1

¢t
¡
µ
@S

@U

¶n¸
¢U = ¡Fni+1=2

¾i+1=2

i;j

+Fni¡1=2
¾i¡1=2
i;j

¡ Gnj+1=2
¾j+1=2

i;j

+ Gnj¡1=2
¾j¡1=2
i;j

+ Sni;j (30)

These equations can be evaluated to get ¢U entirely
at the current time level at the expense of matrix in-
version containing the source term Jacobian.

Temporal accuracy can be added using Runge{
Kutta integration schemes instead of ¯rst-order accu-
rate Euler integration. The two-step explicit Runge{
Kutta time integration scheme can be written as

Un+
1
2 = Un + °1¢U

n

(31)
Un+1 = Un+

1
2 + °2¢U

n+ 1
2 + ³2¢U

n

where °1 = 1.0, °2 = 0.5, and ³2 = -0.5, and the three
step scheme is given by

Un+
1
3 = Un + °1¢U

n

Un+
2
3 = Un+

1
3 + °2¢U

n+ 1
3 + ³2¢U

n (32)

Un+1 = Un+
2
3 + °3¢U

n+ 2
3 + ³3¢U

n+ 1
3

where °1 = 8=15, °2 = 5=12, °3 = 3=4, and ³2 =
¡17=60, ³3 = ¡5=12.

3.3 Flux-Di®erence Split Algorithm

The basic feature of the °ux-di®erence split algorithm
is the solution of a local Riemann problem at the cell
interface to determine the cell-face °ux. An approx-
imate Riemann problem is used with Roe's scheme,
originally developed for a perfect gas [10] and later ex-
tended to a thermo-chemical non-equilibrium gas [11].
The °ux-di®erence scheme used here is based on the
latter method.

The approximate Rieman solver is implemented by
computing the cell face °ux as a summation of the
contributions from each wave component,

Fi+1=2 =
1

2
(FR + FL)¡ 1

2

Ns+4X
i=1

®̂i

¯̄̄
^̧
i

¯̄̄
Êi

=
1

2
(FR + FL)¡ 1

2
([[F ]]A + [[F ]]B + [[F ]]C)

(33)

where subscripts R and L represent the right and left
state respectively, ¸i are eigenvalues, Ei are eigen-
vectors, ®i are corresponding wave strengths, and

^
indicates Roe-averaged quantities. The [[F ]]A term
corresponding to the repeated eigenvalues ¸i = u can
be written as

[[F ]]A =

µ
[[½]]¡ [[p]]

â2

¶
jûj

26666664
½̂i

û

v̂

êv

Ĥ ¡ â2=(°̂ ¡ 1)

37777775

+ ½̂ jûj

26666664
[[½i=½]]

0

[[v]]

[[ev]]

µ

37777775 (34)

where

[[(¢)]] = (¢)R ¡ (¢)L

µ = [[ev]]¡
NsX
i=1

ª̂i[[½i=½]] + v̂[[v]]

ªi ´ 1

~° ¡ 1
@p

@½i
=
RiT

~° ¡ 1 ¡ eeq;i +
u2 + v2

2

~° =
~Cp
~Cv
=
Cp;t + Cp;r
Cv;t + Cv;r

R = ¹R=Ms
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The [[F ]]B and [[F ]]C terms which are contributions
from the eigenvalues ¸i = u§ a, are found to be

[[F ]]B;C =
1

2 â2
([[p]]§ ½̂ â[[u]]) (û§ â)

2664
½̂i
û§ â
v̂
êv

Ĥ § ûâ

3775
(35)

For added spatial accuracy, a higher-order approx-
imation using the MUSCL approach can be applied.
When the MUSCL approach is employed, the prim-
itive variables of the right and left states at the cell
interface are evaluated using the following extrapola-
tion formulas [3]

qLi+1=2 = qi +
1¡ ∙

4
¹±+qj¡1=2 +

1 + ∙

4
¹±¡qj+1=2

qRi+1=2 = qi+1 ¡
1 + ∙

4
¹±+qj+1=2 ¡ 1¡ ∙

4
¹±¡qj+3=2

(36)

where q is any primitive variable, the superscripts L
and R represent left and right extrapolation respec-
tively, and ∙ determines the type of extrapolation
method such that

∙ =

(¡1 2nd-order upwind scheme
1=3 3rd-order upwind scheme
1 2nd-order classic centered scheme

(37)

In the above equations, the slopes of the variables are
limited to prevent nonphysical oscillations and to pre-
serve the TVD (Total Variation Diminishing) prop-
erty. The limited slopes can be written using the min-
mod limiter as follows:

¹±¡qi+1=2 = min mod(± qi+1=2; !± qi¡1=2)
(38)

¹±+qi+1=2 = min mod(± qi+1=2; !± qi+3=2)

The minmod limiter is a function that selects the
smallest number from a set when all have the same
sign but is zero if they have di®erent signs such that

min mod(x; y) =

(
x if jxj < jyj and xy > 0
y if jxj > jyj and xy > 0
0 if xy < 0

(39)

with the limits on ! given as

1 ∙ ! ∙ (3¡ ∙)=(1¡ ∙) (40)

3.4 Temperature Calculation

The conserved variables at each cell center are up-
dated using Eq. (30) by a matrix inversion. From these

conserved variables, new values of the primitive vari-
ables, ½s, u, v, ev, E, are easily obtained. However,
to close the problem, the temperature and vibrational
temperature are determined at each iteration cycle. A
Newton{Raphson method is used to obtain the tem-
perature in the following manner [5, 12]:

T (k+1) = T (k) +

½e¡
X
s

½ses

³
T (k); T (k)v

´
½Cv;tr

(41)

T (k+1)v = T (k)v +

½ev ¡
X
s

½sev;s

³
T (k)

´
½Cv;v

While the total internal energy e and vibrational en-
ergy ev are directly obtained from the updated con-
servative variables, the species internal energies es
and the species vibrational energies ev;s are calculated
from the gas model using the current values of both
temperatures. The iteration is carried out until con-
verged values of both temperatures are obtained.

4 VALIDATION STUDIES

4.1 H2{Air Reaction Model and Local
Ignition Averaging

The two-step Rogers{Chinitz reaction model is used in
this study [13]. This model was developed to represent
H2{air chemical kinetics with as few reaction steps as
possible while still giving reasonably accurate global
results. This model consists of the following two steps:

H2 +O2 Ã! 2OH
(42)

2OH+ H2 Ã! 2H2O

where the forward reaction rate constants are given
by

Kf;r = Af;r(Á)T
Nf;r exp(¡Ef;r= ¹RT ) (43)

and the pre-exponential Af;r(Á) is a function of the
equivalence ratio Á, the fuel-to-air ratio divided by
the stoichiometric fuel-to-air ratio. Values of the pa-
rameters used in this model are"
Af;1(Á) = [8:917Á+ (31:433=Á)¡ 28:950] 1047
Nf;1 =¡10
Ef;1 = 4 865 cal/mole

(44)

"
Af;2(Á) = [2:000 + (1:333=Á)¡ 0:833Á] 1064
Nf;2 =¡13
Ef;2 = 42 500 cal/mole

(45)
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The backward reaction rate can be obtained from

Kb;r = Kf;r=Kc;r (46)

where the equilibrium constant Kc;r is given by

Kc;r = Ac;r T
Nc;r exp(¡Ec;r= ¹RT ) (47)

where "
Ac;1 = 26:164£ 103 cm3=mole ¢ s
Nc;1 = 0
Ec;1 = 17 867 cal/mole

(48)

"
Ac;2 = 2:682£ 10¡3 cm6=mole2 ¢ s
Nc;2 = 1
Ec;2 =¡137 930 cal/mole

(49)

This model is valid for initial temperatures of 1000{
2000 K and equivalence ratios of 0.2{2. Since the
chemistry model is not valid below 1000 K, an igni-
tion temperature must be speci¯ed. Nitrogen is also
counted as a collisional partner in the thermodynamic
model and the relaxation process, but not included in
the chemical reaction model since the maximum tem-
perature in the hydrogen{air reaction does not reach
the dissociation temperature of nitrogen.

Before an actual calculation using the °ow solver is
made, the chemical kinetic model must be examined
to see how each species concentration is changing, and
on what time scale. This may provide some insight
into the sti®ness of the system and some clues for es-
tablishing a °ow solver time step that permits species
concentrations to follow the correct kinetics.

The mass production rate, Eq. (14), can be indepen-
dently integrated using the reaction data in Eqs. (43){
(49) to yield the species mass fraction history. A typ-
ical result obtained using a Runge{Kutta integration
method is in Fig. 1. The mass fraction of OH is seen
to rise very rapidly as soon as the ignition starts. The
OH production reaction is instantaneous at its ini-
tial stage and goes to equilibrium very quickly in less
than 10¡11 s. After that, the reactions seem to re-
main in equilibrium until the H2O production reac-
tion begins around 10¡9 s. It is interesting to note
that all these major changes in species concentrations
take place within the ¯rst 10¡7 s, a time interval that
is a typical °uid dynamic time step in the calculations.
Moreover, the integration time step should remain at
or below 10¡12 s to ensure stable integration using the
Runge{Kutta scheme and to properly follow the chem-
ical kinetics. This shows the sti®ness of the chemical
reaction model.

From the above observation, it could be deduced
that the integration time step for the °ow solver

10-14 10-13 10-12 10-11 10-10 10-9 10-8 10-7

Time (sec)

0
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s
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n

OH

O2

H2

H2O

Fig.1: Species mass fraction history from chemical ki-
netics.

should be less than 10¡12 s to properly include the
chemical kinetics. Moreover, it should be much less
than this order in regions of OH production. How-
ever, it is practically impossible to use this small time
step in the °ow solver. When using 10¡12 s as a °ow
solver time step, 109 integration steps might be needed
to solve a typical detonation wave propagation prob-
lem which has a time scale of interest of 10¡3 s. This
would result in 104 days of CPU time when 1 sec-
ond of CPU time per computation cycle, which is a
proper estimate for this code on a typical front-end
workstation, is assumed. Fortunately, however, most
of this sti®ness problem can be taken care of by the
point implicit treatment of source terms, through ef-
fectively rescaling all the characteristic time scales in-
volved. Thus, a typical °uid dynamic time step of the
order of 10¡7 s can be safely used throughout the cal-
culation, since the species production rates during this
time interval can be properly treated by the e®ective
rescaling of the chemical reaction time scale.

However, the very ¯rst time step where all the dras-
tic changes take place within that short period of
time cannot be properly described by rescaling time
alone. Another special treatment for the igniting cell
is needed to be able to use a typical °ow solver time
step. For this purpose, a \local ignition averaging
model" (LIAM) is proposed. The basic idea for this
model comes from the fact that the species mass frac-
tions are changing drastically in a very short period
as soon as ignition starts and reaches equilibrium soon
afterwards. LIAM separates the cell in which the igni-
tion condition is met and then integrates the chemical
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kinetics equations alone for that cell. A time step
less than 10¡12 s is used in the integration within the
interval of the °ow solver time step. The average pro-
duction rate of each species during this time interval
is then estimated using

ws = ¢½s=¢tf (50)

where ¢½s is the density change of species s, obtained
from a separate integration of the chemical kinetics
equations during this time interval, and ¢tf is the
°ow solver time step. The average value of the forward
reaction rate for each reaction during this interval can
be estimated from

Rf;1 = ¡WO2=MO2 ; Rf;2 =WOH=2MOH (51)

These terms must be obtained for calculating the
source term Jacobian. Here, backward reaction rates
during this ¯rst reaction time step are assumed to be
zero.

LIAM turns out to work well together with the point
implicit scheme to accurately describe chemical kinet-
ics in the °ow solver using a typical °ow solver time
step of 10¡7 s. Figure 2 shows calculated results of the
species mole fraction history at a ¯xed location inside
the detonation chamber initially ¯lled with hydrogen{
air mixture. Excellent agreement can be seen with the
equilibrium concentration data [14]. This assures that
the chemical kinetics are properly modeled and cou-
pled to the °ow solver.
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Fig.2: Species mole fraction history from the °ow
solver.

4.2 Spatial and Temporal Accuracy

Generally speaking, a higher-order scheme may yield
more accurate results, in turn requiring more comput-
ing time. The present computer model accommodates
the options to choose numerical schemes of both space
and time integration up to third-order accuracy. For
temporal accuracy, Euler integration for ¯rst-order,
two-step Runge{Kutta (RK) integration for second-
order, and three-step RK for third-order are contained
in the model. For spatial accuracy, the MUSCL ap-
proach is used for higher-order approximations. This
section examines the e®ect of the order of the numer-
ical schemes on the predicted detonation wave. This
can then be used to select the order of the scheme nec-
essary to provide adequate resolution of the physical
process.

Figure 3 is a comparison of detonation wave pres-
sure pro¯les along a detonation chamber when numer-
ical schemes of di®erent order of accuracy are imple-
mented. This ¯gure compares detonation wave pro-
¯les, propagating into the quiescent hydrogen{air mix-
ture initially at 1 atm. The higher-order calculation
captures the higher peak pressure as expected. How-
ever, it is interesting to note that the second-order
calculation is close to the third-order calculation, and
that the overall shapes of the two waves are almost the
same. This convergence trend can be seen more clearly
in Fig. 4 which shows detonation wave velocities as a
function of distance from the initiation point for each
scheme. From this observation, a second-order calcu-
lation is a reasonable choice when e±ciency and ac-
curacy are considered together. Thus, a second-order
accurate scheme in both space and time is employed
to be used for further calculations, unless otherwise
noted.

4.3 Mesh Convergence

A mesh convergence test is performed to determine
the proper mesh size to insure accurate resolution of
the physical process. The same con¯guration and pa-
rameters are used as before but with di®erent mesh
sizes. A second-order accurate scheme in both space
and time is used throughout the calculation.

Figure 5 shows detonation wave pro¯les resulting
from three di®erent mesh sizes. Actual dimensional
sizes of 5.0, 2.5, and 0.5 mm are used, respectively,
in modeling a 2 m long tube with planar initiation.
For calculations of both 5.0 and 2.5 mm mesh size, a
time step of 10¡7 seconds has been used successfully
to yield stable solutions. However, for the smallest
mesh size of 0.5 mm, a smaller time step of 5 £ 10¡8
s has been used, since a time step of 10¡7 s does not
yield a stable solution for this mesh size.

The convergence trend can be seen clearly from
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0 0.5 1 1.5 2

Distance from initiation point (m)

1000

1500

2000

2500

D
et

on
at

io
n

V
el

oc
ity

(m
/s

)

1st order in space and time

2nd order in space and time

3rd order in space and time

Fig.4: Detonation velocities from di®erent orders of
accuracy.

Fig. 6 which depict detonation wave velocities from
the initiation point for each mesh size used. The re-
sults of the 2.5 mm mesh show values almost con-
verged to the 0.5 mm mesh in both detonation velocity
and overall wave shape. If we assume the computing
time of 2.5 mm mesh case to be 1 CPU, then the cor-
responding computing times of 5.0 mm and 0.5 mm
case will be about 1/4 CPU and 50 CPU, respectively,
for a two-dimensional calculation. When we take into
account accuracy as well as e±ciency in choosing the
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Fig.5: Wave pro¯les from di®erent mesh sizes.

mesh size, a mesh size of 2.5 mm is reasonable.
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Fig.6: Detonation velocities from di®erent mesh sizes.

4.4 Independence of the Geometry

The properties of fully-developed detonation waves
should be the same regardless of the geometry involved
whenever the initial condition and composition of the
fuel{air mixture are the same. Four di®erent calcu-
lations are performed here to con¯rm the results to
follow this postulate. We take four cases with two
kinds of geometry and two initiation methods, which
are two-dimensional calculations with planar initia-
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tion and with point initiation, and repeat the calcu-
lations for axisymmetric °ow with the same initiation
methods. The calculation domain is 68.5 cm £ 3.75
cm for both and ¯lled with a stoichiometric hydrogen{
air mixture at 1 atm. Initiation occurs near the left-
end wall.

t = 10 µsec

t = 20 µsec

t = 30 µsec

t = 40 µsec

t = 50 µsec

t = 60 µsec

t = 70 µsec

t = 80 µsec

t = 90 µsec

Fig.7: Point initiation in axisymmetric geometry.

Figure 7 shows pressure contour plots at speci-
¯ed times for a point initiation case in axi-symmetric
geometry. The formation of a planar detonation wave
is clearly captured. A planar wave can be observed to
evolve from a spherical wave originated from a point
initiation through the interactions of the re°ecting
waves.

The calculated results are summarized in Figs. 8
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Fig.8: Detonation velocities from di®erent geometries
in use.

0 0.1 0.2 0.3 0.4 0.5 0.6

Distance from initiation point (m)

0

5

10

15

20

D
et

on
at

io
n

P
re

ss
ur

e
(a

tm
)

2D plane, Planar initiation

2D plane, Point initiation, on the axis

2D plane, Point initiation, on the wall

Axi-symmetric, Plane initiation

Axi-symmetric, Point initiation, on the axis

Axi-symmetric, Point initiation, on the wall

Fig.9: Detonation pressures from di®erent geometries
in use.

and 9. These ¯gures show detonation wave velocities
and the CJ plane pressures, respectively, along two
di®erent lines which are the lower boundary (actually,
the centerline) and the upper wall. For point initiation
cases, detonation velocities and pressures on the axis
are observed to remain lower than those of planar ini-
tiation cases but increasing, while the detonation ve-
locities and the pressures on the wall are much higher
than those of planar initiation cases and decreasing
until the formation of the planar wave. The higher
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Fig.10: Comparison with CJ theory.

pressure and velocity on the wall are due to the re°ec-
tion of the detonation wave. The detonation velocities
and the pressures for all four cases are observed to con-
verge to the same value at a certain distance from the
initiation point where fully developed planar waves are
formed, con¯rming the postulate stated above.

4.5 Comparison with Chapman{Jouguet
Theory

The calculated detonation wave properties are com-
pared with those obtained from CJ theory. Since the
properties of the fully-developed detonation wave con-
verges to the same value regardless of the geometry
involved, as seen in the previous section, and since
we are interested in the ¯nal converged state of the
CJ condition, calculations can be properly performed
on the one-dimensional planar geometry for the sake
of e±ciency. The computational domain is thus com-
posed of a detonation tube of semi-in¯nite length ¯lled
with a stoichiometric hydrogen{air mixture initially
at 1 atm and 298.15 K. The detonation is initiated
just adjacent to the left-end wall, and the planar wave
propagates to the right through the quiescent gas mix-
ture. The detonation wave velocity, pressure, density,

and temperature as a function of distance from an
initiation point are compared with the theoretical CJ
values [14]. The converging trend of all the variables
of the detonation wave is con¯rmed in each calcula-
tion of di®erent equivalence ratios. These converged
values can be compared to the theoretical CJ data.
The results are summarized in Fig. 10, which depicts
the converged values of each detonation variable with
varying equivalence ratios, and compares these values
with the theoretical CJ data. Excellent agreement be-
tween them is observed.

4.6 Simulation of Shock-Induced Detonation

Experiments were performed to validate the numeri-
cal simulation using a detonation-driven shock tube.
A schematic of the facility is shown in Fig. 11. The
driver tube was highly pressurized initially with he-
lium to 200 atm. The detonation tube was ¯lled with a
stoichiometric hydrogen{air mixture to 3 atm. These
two tubes were separated by a double-diaphragm sec-
tion. When the double-diaphragm was ruptured, a
shock-induced detonation was set up in the detona-
tion tube. The pressure histories were recorded at
several stations on the wall of the detonation tube
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(PT2{PT5). Figure 12 shows the pressure histories,
recorded at stations 4 and 5 corresponding to 166.4
cm and 224.8 cm, respectively, from the location of
the downstream diaphragm. The incident detonation
wave and the re°ected wave were clearly captured at
each station. The re°ected wave traveled toward the
left after re°ecting from the diaphragm separating the
driven tube and detonation tube. It is interesting to
note that the pressure history after arrival of the re-
°ected wave is observed to increase in steps.

PT4 PT5

3.05 m 2.74 m 3.07 m3.16 m 3.05 m

Driver Tube
(152.4 mm ID)

Detonation Tube
(152.4 mm ID)

Driven Tube
(41.25 mm ID)

Conductivity Channel
(471 mm Length)

End DiaphragmDouble Diaphragm Diaphragm
Thrust
Stand

PT3PT2PT1 PT8PT7PT6 PT9

Fig.11: Schematic of the UT Arlington detonation-
driven shock tube.
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Fig.12: Pressure measurements at stations 4 and 5

Numerical modeling of the experiment requires that
some assumptions and simpli¯cations be made. For
example, the double diaphragm section measured
11.43 cm long and was pressurized initially to 100 atm,
about a half of the pressure in the driver tube. There-
fore, complex wave interactions may exist inside the
double diaphragm section and driver tube until the
second diaphragm ruptured and shock-induced deto-
nation was initiated in the detonation tube adjacent to
the diaphragm. The details of the double diaphragm
rupture were not modeled in the simulation but were
replaced by an e®ective pressure inside the driver tube.

This e®ective pressure was assumed to act directly on
the hydrogen{air mixture in the detonation tube as
if the diaphragm was e®ectively removed at t = 0.
The e®ective pressure should be lower than the ac-
tual initial pressure in the driver tube but higher than
the pressure inside the double diaphragm section. A
reasonable ¯rst guess for the e®ective pressure in the
driver tube was 150 atm.

Another diaphragm separated the right-end of the
detonation tube and the driven tube. The inner diam-
eter of the driven tube was 4.11 cm, much smaller than
the 15.24 cm diameter detonation tube. The right-
end of the detonation tube is modeled by a re°ective
boundary based on the fact that the area opening to
the driven tube, even after diaphragm rupture, corre-
sponded to only 7 percent of the cross-sectional area
of the detonation tube.

Figure 13 shows the resulting pressure histories at
stations 4 and 5 from the numerical simulation. The
simulation nearly reproduces important features of the
experiment, in spite of the assumptions and simpli¯-
cations used. The arrival time lag in the incident det-
onation wave between station 4 and 5 is observed to
be almost the same as the experimental measurement,
which suggests excellent agreement in the detonation
wave velocities. The same agreement is observed in
the re°ected waves. The pressure levels of both inci-
dent and re°ected waves are also seen to agree well,
with the calculated pressure history showed an in-
crease at each station after the arrival of the re°ected
wave. The step-like pressure rise the simulation al-
most exactly reproduce the experimental result.
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Fig.13: Calculated pressure histories at stations 4 and
5.
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Fig.14: Wave interations in shock-induced detonation tube.
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This step-like pressure history is further examined.
Figure 14 shows the evolution of the pressure and den-
sity pro¯les inside the detonation tube. The incident
detonation wave is clearly seen to propagate to the
right, and the driver material interface is also clearly
observed from the density pro¯le to follow the inci-
dent wave. The re°ection of the incident wave from
the right boundary can be seen at 1.5 ms. The re-
°ected wave propagates to the left until it meets the
right-running material interface around 2.4 ms. The
left-running re°ected wave re°ects again from the ma-
terial interface and, as a result, a higher pressure and
density are generated from this re°ection which prop-
agates back to the right. The material interface trav-
els back toward the left as can be seen after 2.4 ms.
The right-running wave re°ected from the material
interface is observed to re°ect once again from the
right boundary around 3.1 ms and the resulting shock-
increased pressure and density are seen to propagate
back to the left. From these observations, the step-like
increasing pattern of the pressure history turns out to
be a result of these multiple wave re°ections.

The simulation result using the current numerical
model is in excellent agreement with experimental
data. From this observation, the assumptions and the
simpli¯cations made to model the experiment are also
justi¯ed. The use of an e®ective driver pressure ap-
pears to be a reasonable simpli¯cation for modeling
the double diaphragm section. This simulation vali-
dates the current numerical model for calculating the
unsteady propagation of a detonation wave and its in-
teractions with boundaries as well as other waves.

5 CONCLUSIONS

A numerical model to simulate hydrogen{air detona-
tion wave propagation and re°ection has been pre-
sented. For the purpose of constructing an e±cient
numerical tool to be used in parametric studies, while
maintaining a reasonable accuracy to be used for
analysis, a two-step global model has been selected
and validated for the chemcal reactions of a hydrogen{
air mixture. The calculated results from the present
model were compared with results from Chapman{
Jouguet theory and experimental data. Excellent
agreement was observed. The observations validated
the e±ciency and the accuracy of the present model.
Numerical schemes of di®erent order were tested both
in temporal and spatial accuracy up to third-order.
Mesh convergence tests were performed for di®erent
mesh sizes. A second-order accurate scheme in both
space and time integration applied to 2.5 mm mesh
size seemed to be an appropriate choice from the
trade-o®s of accuracy and e±ciency. Geometry in-
dependence of detonation wave properties were also

con¯rmed as a validation process of the present nu-
merical model. A shock-induced detonation experi-
ment has been simulated. The calculated result al-
most exactly reproduced the experimental data, and
this provided a validation of the present model in the
unsteady propagation of a detonation wave.
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