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Abstract  
The accurate determination of the speed of a propagating 

disturbance is important for a number of applications.  A 

nonstationary cross-spectral density phase technique was 

developed to provide a statistical estimation for the 

propagation time, and was applied to a shock and a 

detonation wave.  The results show that by including an 

envelope signal, the technique is an improvement over the 

traditional time-of-flight method, but it is more prone to 

error than the cross-correlation technique.   
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1. Introduction 
Determining the speed of a propagating disturbance is 

important for a number of applications.  In particular, the 

propagation of a detonation wave is of importance in 

fundamental studies of detonations as well as in the 

development of pulse detonation engines [1].  

The most common method for determining the wave 

propagation speed is by the time-of-flight (TOF) method.  

The average wave propagation speed is defined as 
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where the distance between the sensors is known.  This 

method is the most simplistic approach, but it can lead to 

poor estimates of uncertainty.  The TOF method makes 

certain assumptions on the detection of the disturbance, 

primarily, that the disturbance results in a distinct signal.  In 

reality, however, such a signal is subject to some uncertainty 

due to transducer characteristics, including thermal drift, the 

medium that the disturbance is propagating through and the 

data acquisition process itself.  To evaluate the uncertainty, a 

nonstationary cross-spectral density phase (NCSDP) 

technique was developed.  Specifically, this technique was 

applied to the propagation of shock and detonation waves. 

 

2. Determination of the Propagation Time 

2.1 Non-stationary cross-correlation technique 
A propagating disturbance is a nonstationary event.  In 

practice, the nonstationary signal may be influenced by 

external factors as highlighted above.  Previously, a 

nonstationary cross-correlation (NCC) technique was 

developed to improve on the time-of-flight technique so as 

to handle the various external influences [2].  The NCC 

technique applies four criteria to the data, and computes a 

time-varying cross-correlation function, yielding a time 

delay surface.  The surface is used to provide a statistical 

approach to determining the propagation time for the 

propagating wave through locating the peak in the surface.  

This time delay is the time-of-flight of Eq. (1).  Knowing 

the transducer distance then allows the propagation speed 

to be evaluated. 

 

2.2 Non-stationary cross-spectral density phase 
A spectral method, known as the non-stationary cross-

spectral density phase (NCSDP) method, that is based on the 

cross-correlation function is proposed.  The function 

( )tfWxy ,  is obtained by a Fourier transform of the discrete 

NCC as follows:  
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The one-sided, nonstationary frequency-time cross-

spectral density function can then be represented by a real 

and an imaginary part known as the co- and quad-spectrum 

respectively.  Both functions are shown in the following 

equations, and are necessary in determining the time delay 

between the given signals:   

 

 ( ) ( ) ( )
1

, , ,
2

xy xy yxC f t W f t W f t = +   (4) 

 ( ) ( ) ( ), , cos ,xy xy xyC f t W f t f tθ=  (5) 

 ( ) ( ) ( )
1

, , ,
2

xy xy yxQ f t W f t W f t = −   (6) 

 ( ) ( ) ( ), , sin ,xy xy xyQ f t W f t f tθ= . (7) 

  

Using the above relationships, the phase angle can be 

computed as 
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Since the inverse tangent function is bounded, the above 

equation does not account for the quadrant being computed, 

thus requiring the phase angle to be shifted to its proper 

quadrant. 

The disturbance is assumed to be nondispersive for the 

purpose of this study.  It is also advisable to restrict the 

sensor usable bandwidth to less than 10 percent of the 

natural frequency to avoid introducing phase errors.   
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2.2.1 Zoom transform 

The spectral resolution of the signals has to be considered 

prior to applying the spectral analysis.  Since the 

measurement of a detonation wave requires a high sampling 

rate with a limited amount of samples before any retonation 

or reflected wave occurs, the spectral resolution for the 

signal can be very poor.  The poor resolution and the use of 

a multi-valued function (Eq. (8)) in computing the phase 

angle leads to an uncertainty of πn2 .  So the uncertainty is 

dependent on how frequent the phase angle jumps with 

respect to the spectral resolution.  This uncertainty can 

propagate to an incorrect calculation of the time delay for 

the given signals.   

 

 
Figure 1 - The effect of poor spectral resolution on 

determining the phase angle’s trend. 

 

An example of a poor and proper resolution is shown in 

Fig. 1.  In the example, the poor resolution is only able to 

capture one point for each phase jump, which provides an 

incorrect trend of the phase angle with respect to 

frequency.  The incorrect trend is represented by the slope 

n in Fig. 1.  The proper resolution on the other hand will 

provide several points that are sufficient to generate a 

proper trend noted by m in the figure.   

The πn2  uncertainty can be resolved with a much 

finer spectral resolution, which requires a larger sample 

size that is not always possible.  An alternative method is 

to apply a zoom transform to the data series.  The zoom 

transform can improve the spectral resolution, which will 

provide a better representation of the cross-spectral density 

phase function.  The spectral information lost due to 

inadequate sample size is minimized, and can be recovered 

to an acceptable tolerance with the zoom transform.  Also, 

since the wave is assumed to be captured as a 

nondispersive propagation, the phase angle’s linearity with 

frequency should contain no unexpected phase jumps, 

allowing for the zoom transform to be applied to limited 

samples. 

 

2.2.2 Coherence function 

Another form of uncertainty arises when the coherence 

function is not unity for the entire spectrum.  The coherence 

function is an indicator of how strong of a correlation there 

is between the two signals for the entire spectrum.  The 

coherence function is provided by 
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A coherence value of unity for the entire spectrum is the 

ideal situation; however, it is not always possible to have a 

strong coherence throughout the spectrum.  The nonlinearity 

relationship between the signals and noise in the signals 

yield a coherence of less than unity.  For this reason, a 

limiting factor of 50% was applied for rejecting regions of 

high uncertainty. 

 

2.2.3 Phase uncertainty 

The phase angle can be determined once the coherence 

function is known and it is given by 
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Referring to the above equation, there are two ways of 

improving the uncertainty for the phase angle.  One way is 

to ensure that both signals are highly coherent, and the next 

is to have a large number of averages.  It should also be 

noted that with a low coherence value, the uncertainty in the 

phase angle becomes very large which then requires a large 

ensemble of averages to reduce the uncertainty to a tolerable 

level.  For this reason, a coherence limit of 50% is applied to 

the NCSDP function.  While this is somewhat arbitrary, it 

allows for an adequate tolerance with an adequate ensemble 

of averages for the NCSDP function.  Further information 

about the uncertainty of the phase angle is provided in [3].    

 

2.2.4 Weighting function 

Misrepresentation of the phase uncertainty can also arise if a 

weighting function is not applied to the NCC function.  The 

error due to spectral leakage would propagate to the 

coherence function and the uncertainty in the phase estimate.  

Based on unreported work, a Blackman-Harris window was 

selected as the weighting function as it provides a relatively 

higher coherence than the typical Hanning and Hamming 

window. 

 

2.2.5 Unwrap phase 

After application of the previous methods for reducing the 

uncertainty in the phase angle, a weighted-resetting unwrap 

of the phase angle is utilized to reduce the uncertainty for 

the trend of the phase angle.  The unwrapping of the phase 

angle is used to remove the discontinuity in the phase jumps, 

which provides a smooth and continuous representation of 

the phase angle by the addition or subtraction of a multiple 

of 2π  to the phase angle.  This method consists of several 

unwrapped portions of the phase angle.  The phase angle is 

unwrapped till the coherence limit is crossed, and then 
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determines the slope of the unwrapped phase.  The process 

would continue till the entire data set is processed.  

Afterwards, a weighted percentage dependent on the amount 

of samples for a given trend is applied and used to compute 

an overall trend for the phase angle with respect to 

frequency.  This method has the advantage that the 

uncertainty produced by the coherence is limited further by 

resetting the phase angle, and by weighting the larger 

portions of values above the 50% limit heavier.  A problem 

arises if the coherence for the signals is constantly crossing 

the coherence limit, which will provide small sample sets for 

determining the slope.  As the sample size approaches one 

for a given set, the estimation for the trend decreases.  For 

sample sets consisting of a sample size of 1, a discarding of 

the data set is necessary since it is an inadequate amount for 

determining a trend.   

The above method is not the only one that can be 

applied, but is the one currently implemented for 

improving the estimation of the trend.  Two other methods 

that can be used are not to unwrap the phase, and to have 

the signal unwrapped once.  The advantage to the wrapped 

phase angle is that it is less computationally intensive, and 

it will produce a large dataset of slopes to improve the 

averaging process.  A problem that can arise from this 

method is that it may contain a few points before a phase 

jump, which may lead to poor estimates of the trend of the 

phase angle.  This problem may be overcome by a finer 

spectral resolution that will then require more 

computations with a zoom transform.   

The last method would consist of one trend per time 

frame.  The advantage to this method is that is uses a large 

amount of samples to determine a single trend, which may 

reduce the error for the phase.  However, further error in 

unwrapping the phase may propagate if large portions of 

coherence limit crossing occur.  This method is not 

recommended due to the uncertainty propagating with 

increasing frequency that is introduced from poorly coherent 

signals.   

 

2.2.6 Linear fit 

After unwrapping the phase, a linear least squares fit (LLSF) 

method was applied for determining the slope.  No 

weighting scheme was applied in the determination of the 

linear fit.   

For this method, the time delay is not directly 

proportional to the phase of the NCSDP function due to the 

application of the FFT to the data.  The discrete nature as 

well as spectral leakage contributes to the inability of the 

FFT to compute the Fourier transform of the NCC 

function.  This is clearly seen when the FFT of the 

autocorrelation function for both signals include imaginary 

components.  It should be noted that even functions, such 

as the autocorrelation function, contain no imaginary 

components after the application of the Fourier transform.   

Since the autospectral density functions have a phase 

angle, differences between the theory and application have 

to be determined.  An example of an unwrapped phase 

angle for the autospectral and cross-spectral density 

function at a given time step for a detonation wave is 

shown in Fig. 2.  The figure shows the small phase 

difference between the two functions, where the phase for 

the autospectrum is the reference line for no time delay.     

 

 
Figure 2 - The unwrapped phase angle for the autospectral 

(solid black line) and cross-spectral density function 

(dashed red line) for a given time step. 

 

It can be shown that 
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The time delay can be computed by setting the terms in the 

parenthesis in Eq. (11) to be equal to the slope determined 

from the LLSF method.  Equation (11) can also be used for 

the autospectral density phase angle.  Obviously, there is no 

time delay for the autospectrum.   

An alternative method for determining the time delay is 

to compute the average difference between the 

autospectrum and cross-spectrum.  This method does not 

require knowledge of the sampling properties and is given 

by  
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The time delay estimate would then be determined by 

ensemble averaging over time.  Chauvenet’s criterion for 

each time step was then applied to eliminate outliers, 

specifically near the disturbance. 

 

2.2.7 Envelope correlation coefficient 

An alternate method for improving the estimate of the 

propagation time is known as the envelope correlation 

coefficient [4].  This method utilizes the squared envelope 

for correlation, which provides a sharper and more 

definitive estimation of the propagation time.  The 

derivation for the envelope correlation coefficient is shown 

in detail [4] and is represented as 
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where the coefficients are given by 
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The NCC method was modified to compute the cross-

correlation coefficient function as well as the Hilbert 

transformation of the coefficient, which are used to define 

the envelope correlation coefficient.  Similar to the original 

NCC method, the modified version can be applied to the 

NCSDP to provide an improved estimate of the 

propagation time. 

 

3. Results 

3.1 Application to a shock tube experiment 
The NCSDP method was applied to determine the wave 

propagation for the incident and reflected shock waves for a 

closed-end shock tube.  A set of pressure profiles for the 

experiment is provided in Fig. 3. 

 

Figure 3 – The pressure profile for a closed-end shock tube 

experiment containing the incident and reflected shock 

waves. 

 

The result from applying the NCC is shown in Fig. 4.  The 

peak value for the NCC symbolizes the most probable time 

delay of the given signal, which defines the propagation 

time for the shock wave.   

The results from the NCC are then used to compute the 

NCSDP, and a comparison for the results is provided in 

Tables 1 and 2.  Comparing the NCC with the NCSDP, it is 

clearly seen that the NCSDP yields a larger uncertainty in 

the determination of the propagation time.  The large 

uncertainty provided with the NCSDP method is due to poor 

coherence in the signals.  Referring to Fig. 5, the coherence 

function for the incident shock is extremely poor as it 

contains a large percentage of frequencies below the 

coherence limit, leading to a large error in the determination 

of the phase.  Similar results are also seen for the reflected 

shock wave that contains a higher coherence between the 

transducers, but still has a large percentage below the 

coherence limit. 

 

Figure 4 – The normalized cross-correlation function for 

the incident shock wave.   

 

Table 1 – Propagation time results for the incident shock 

wave.  

τ [ms] σ [ms]

TOF -0.178 -

NCC - Raw Data -0.165 0.087

NCC - Envelope Signal -0.186 0.033

NCSDP - Raw data 0.095 0.274

NCSDP - Envelope Signal -0.161 0.032  
 

Table 2 – Propagation time results for the reflected shock 

wave.  

τ [ms] σ [ms]

TOF 0.316 −

NCC - Raw Data 0.313 0.002

NCC - Envelope Signal 0.335 0.003

NCSDP - Raw data 0.239 0.101

NCSDP - Envelope Signal 0.318 0.030  
 

 
Figure 5 – The coherence function for the incident and 

reflected shock wave.   

 

The uncertainty can further be reduced for these 

techniques if envelope functions were applied to the raw 

data first.  The results for both the NCC and NCSDP 
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methods where the squared envelopes were used are also 

displayed in Tables 1 and 2.  A significant improvement of 

the estimate and uncertainty for the propagation time is 

clearly seen for both methods.  The NCC for the envelope 

signals is shown in Fig. 6.  It is clearly seen that the 

envelope signals improves the time delay determination (in 

comparison to the un-enveloped approach displayed in Fig. 

4), and minimizes the error introduced due to the bias 

nature of the finite window.  The cross-correlation is 

biased for values surrounding no time delay, and appears 

as an attenuation toward values near the edges of the 

window. 

 

Figure 6 – The cross-correlation function for the envelope 

signals of the incident shock wave.   

 

3.2 Application to a propagating detonation wave 
Data from a propagating detonation wave was also analyzed 

with the NCSDP method.  The pressure profiles for six 

transducers that are separated by four inches on a PDE are 

shown in Fig. 7.  The PDE used for this study was 1” in 

diameter, and used a low-energy spark plug to ignite the 

Propane-Oxygen mixture.  The NCC for the given pressure 

transducers as well as the NCC for the envelope signals are 

provided in Figs. 8 and 9.  These results once again were 

used to determine the NCSDP, and the results for each 

method are displayed in Tables 3 and 4 for a series of 

transducers.  Similar to the results from the shock tube, the 

uncertainty for the NCSDP is larger than the NCC method.  

The estimation of the propagation time is also highly 

influenced by the violent pressure oscillations as seen in Fig. 

7.  The oscillations are especially troublesome for 

transducers 4 and 5, which did not properly resolve the 

shock front.   

The oscillations are thought to be due to a combination 

of retonations, reflected shock waves, and the recession of 

the pressure transducers.  The recession of the transducers 

allows for the phenomenon known as Helmholtz resonance 

to occur.  It can be shown that the resonant frequency is a 

function of the dimensions of the cavity as well as the speed 

of sound.  Since it is assumed that the cavity is the same 

dimensions for all the transducers, the frequency of the 

oscillations is then determined by the speed of sound.  So an 

increase in temperature will increase the frequency of the 

oscillations.  These oscillations provide additional correlated 

peaks in the NCC method as shown in Fig. 8.  Unfortunately 

these additional correlated peaks influence the phase to 

some form of phase averaging that produces inaccurate 

results of the propagation time.       

 

 
Figure 7 – The pressure profile for a set of pressure 

transducers for a PDE.   

 

Figure 8 – The normalized cross-correlation function for 

pressure transducers 4 and 5.   

 

Table 3 – Propagation time results for the PDE with the use 

of the NCSDP method.   

Sensor TOF

# τ [µs] σ [µs] τ [µs] σ [µs] τ [µs]

1,2 29.8 0.4 29.2 0.1 29.2

2,3 22.9 0.6 25.3 0.1 25.0

3,4 75.3 9.5 27.5 0.2 29.2

4,5 -10.7 12.6 29.0 0.1 25.0

5,6 47.6 13.1 27.0 0.1 29.2

1,3 50.9 7.3 54.3 0.1 54.2

2,5 79.5 3.6 78.8 0.0 79.2

3,5 57.1 0.6 53.7 0.2 54.2

Envelope SignalRaw Data
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Table 4 – Propagation time results for the PDE with the use 

of the NCC method.   

Sensor

# τ [µs] σ [µs] τ [µs] σ [µs]

1,2 29.2 0.0 29.2 0.0

2,3 25.0 0.0 25.0 0.0

3,4 29.2 0.0 29.2 0.0

4,5 25.0 0.0 25.0 0.0

5,6 29.2 0.0 29.2 0.0

1,3 54.2 0.0 54.2 0.0

2,5 79.2 0.0 79.2 0.0

3,5 54.2 0.0 54.2 0.0

Raw Data Envelope Signal

 
 

Figure 9 – The cross-correlation function for the envelope 

signals of pressure transducers 1 and 2.   

 

 

4. Conclusion 
The NCSDP method preprocessing of the data by an 

envelope function appears superior to the TOF method as it 

provides a statistical means for defining the propagation 

time for the propagating wave.  Unfortunately the NCSDP 

method yields a larger uncertainty than the NCC due to 

poorly coherent signals or other physical phenomenon such 

as Helmholtz resonance.  The method is also more 

computationally intensive than the NCC. 

However, the results for the NCSDP may provide 

additional insight to the current state of the detonation 

wave for a given set of transducers that is not easily 

determined with the NCC.  Since the NCSDP provides 

some form of a mean propagation time, it can be compared 

to the NCC propagation time to determine if the detonation 

wave has accelerated or decelerated within the given 

sensors.  Further research to the significance of the 

difference between these methods needs to be done to 

quantify the results.     

 

Nomenclature 

xyC  Co-spectrum 

fs  Sampling rate 

H[ ] Hilbert transform 

nd  Number of averages 

N  Sample size 

xyQ  Quad-spectrum
 

xyR  Nonstationary cross-correlation function 

u   Average wave propagation speed 

xyW  One-sided frequency-time cross-spectral density 

xyW  Double-sided frequency-time cross-spectral density 

x�   Hilbert transformation of x 

t∆  Time-of-flight of a disturbance between two sensors 

x∆  Distance between two sensors 

xyρ  Nonstationary cross-correlation coefficient function 

uvρ  Envelope correlation coefficient function 

xyθ  Phase angle
 

xyγ  Coherence function 

xyτ  Time delay 

σ   Standard deviation 

nω   Natural frequency 

 ^  Estimate 
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